A new hybrid approach to large vocabulary cursive handwriting recognition

نویسندگان

  • Gerhard Rigoll
  • Andreas Kosmala
  • Daniel Willett
چکیده

This paper presents a novel hybrid modeling technique that is used for the first time in Hidden Markov Modelbased handwriting recognition. This new approach combines the advantages of discrete and continuous Markov models and it is shown that this is especially suitable for modeling the features typically used in handwriting recognition. The performance of this hybrid technique is demonstrated by an extensive comparison with traditional modeling techniques for a difficult large vocabulary handwriting recognition task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination of multiple classifiers for handwritten word recognition

Because of large shape variations in human handwriting, recognition accuracy of cursive handwritten word is hardly satisfying using a single classifier. In this paper we introduce a framework to combine results of multiple classifiers and present an intuitive run-time weighted opinion pool (RWOP) combination approach for recognizing cursive handwritten words with a large size vocabulary. The in...

متن کامل

On-Line Handwriting Recognition Using Hidden Markov Models

New global information-bearing features improved the modeling of individual letters, thus diminishing the error rate of an HMM-based on-line cursive handwriting recognition system. This system also demonstrated the ability to recognize on-line cursive handwriting in real time. The BYBLOS continuous speech recognition system, a hidden Markov model (HMM) based recognition system, is applied to on...

متن کامل

An Investigation of Context-dependent and Hybrid Modeling Techniques for Very Large Vocabulary On-line Cursive Handwriting Recognition

This paper addresses a very challenging topic in on-line handwriting recognition. It deals with the problem how to further improve a baseline very large vocabulary HMM-based handwriting recognition system with a vocabulary size of 200.000 German words. The use of sophisticated HMM-technology allows the construction of such a baseline system. It is however an extremely difficult task to further ...

متن کامل

A comparison between continuous and discrete density hidden Markov models for cursive handwriting recognition

This paper presents the results of the comparison of continuous and discrete density Hidden Markov Models (HMMs) used for cursive handwriting recognition. For comparison, a subset of a large vocabulary (1000 word), writer-independent online handwriting recognition system for word and sentence recognition was used, which was developed at Duisburg University. This system has some unique features ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998