Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins.
نویسندگان
چکیده
Protein tyrosine nitration (PTN) is a post-translational modification occurring under the action of a nitrating agent. Tyrosine is modified in the 3-position of the phenolic ring through the addition of a nitro group (NO2). In the present article, we review the main nitration reactions and elucidate why nitration is not a random chemical process. The particular physical and chemical properties of 3-nitrotyrosine (e.g., pKa, spectrophotometric properties, reduction to aminotyrosine) will be discussed, and the biological consequences of PTN (e.g., modification of enzymatic activity, sensitivity to proteolytic degradation, impact on protein phosphorylation, immunogenicity and implication in disease) will be reviewed. Recent data indicate the possibility of an in vivo denitration process, which will be discussed with respect to the different reaction mechanisms that have been proposed. The second part of this review article focuses on analytical methods to determine this post-translational modification in complex proteomes, which remains a major challenge.
منابع مشابه
Protein tyrosine nitration in plants: Present knowledge, computational prediction and future perspectives.
Nitric oxide (NO) and related molecules (reactive nitrogen species) regulate diverse physiological processes mainly through posttranslational modifications such as protein tyrosine nitration (PTN). PTN is a covalent and specific modification of tyrosine (Tyr) residues resulting in altered protein structure and function. In the last decade, great efforts have been made to reveal candidate protei...
متن کاملSite selectivity for protein tyrosine nitration: insights from features of structure and topological network.
Tyrosine nitration is a covalent post-translational modification, which regulates protein functions such as hindering tyrosine phosphorylation and affecting essential signal transductions in cells. Based on up-to-date proteomics data, tyrosine nitration appears to be a highly selective process since not all tyrosine residues in proteins or all proteins are nitrated in vivo. Quite a few investig...
متن کاملIn vivo protein tyrosine nitration in Arabidopsis thaliana
Nitration of tyrosine (Y) residues of proteins is a low abundant post-translational modification that modulates protein function or fate in animal systems. However, very little is known about the in vivo prevalence of this modification and its corresponding targets in plants. Immunoprecipitation, based on an anti-3-nitroY antibody, was performed to pull-down potential in vivo targets of Y nitra...
متن کاملProteomic analysis of protein nitration in aging skeletal muscle and identification of nitrotyrosine-containing sequences in vivo by nanoelectrospray ionization tandem mass spectrometry.
The nitration of protein tyrosine residues represents an important post-translational modification during development, oxidative stress, and biological aging. To rationalize any physiological changes with such modifications, the actual protein targets of nitration must be identified by proteomic methods. While several studies have used proteomics to screen for 3-nitrotyrosine-containing protein...
متن کاملDynamics of Protein Tyrosine Nitration and Denitration: A Review
Stress is a situation in which the cellular redox homoeostasis is altered because of excessive production of different reactive species eg. reactive oxygen species (ROS), reactive nitrogen species (RNS) [1]. The stress which is mediated by ROS like singlet oxygen, superoxide, H2O2 and hydroxyl radicals known as oxidative stress [2]. ROS are produced during cell cycle progression, cell different...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of proteome research
دوره 8 7 شماره
صفحات -
تاریخ انتشار 2009