Some Options for L1-subspace Signal Processing
نویسندگان
چکیده
We describe ways to define and calculate L1-norm signal subspaces which are less sensitive to outlying data than L2-calculated subspaces. We focus on the computation of the L1 maximum-projection principal component of a data matrix containing N signal samples of dimension D and conclude that the general problem is formally NP-hard in asymptotically large N , D. We prove, however, that the case of engineering interest of fixed dimension D and asymptotically large sample support N is not and we present an optimal algorithm of complexity O(N). We generalize to multiple L1-max-projection components and present an explicit optimal L1 subspace calculation algorithm in the form of matrix nuclear-norm evaluations. We conclude with illustrations of L1-subspace signal processing in the fields of data dimensionality reduction and direction-of-arrival estimation.
منابع مشابه
Optimal Algorithms for L1-subspace Signal Processing
Abstract We describe ways to define and calculate L1-norm signal subspaces which are less sensitive to outlying data than L2-calculated subspaces. We start with the computation of the L1 maximum-projection principal component of a data matrix containing N signal samples of dimension D. We show that while the general problem is formally NP-hard in asymptotically large N , D, the case of engineer...
متن کاملEstimating the Number of Wideband Radio Sources
In this paper, a new approach for estimating the number of wideband sources is proposed which is based on RSS or ISM algorithms. Numerical results show that the MDL-based and EIT-based proposed algorithm havea much better detection performance than that in EGM and AIC cases for small differences between the incident angles of sources. In addition, for similar conditions, RSS algorithm offers hi...
متن کاملW-l1-sracv Algorithm for Direction-of- Arrival Estimation
This paper presents an effective weighted-L1-sparse representation of array covariance vectors (W-L1-SRACV) algorithm which exploits compressed sensing theory for direction-of-arrival (DOA) estimation of multiple narrow-band sources impinging on the far field of a uniform linear array (ULA). Based on the sparse representation of array covariance vectors, a weighted L1-norm minimization is appli...
متن کاملA Novel Noise Reduction Method Based on Subspace Division
This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...
متن کاملSignal Subspace Estimation in Hyperspectral Data for Target Detection Applications
Dimensionality Reduction (DR) is a crucial first step in many hyperspectral processing algorithms. In some applications, such as target detection, change detection and classification, it is important to preserve the information associated to rare pixels, i.e. pixels scarcely represented in the data and containing spectral components that are linearly independent of the background. This paper pr...
متن کامل