Data-Driven Graph Construction for Semi-Supervised Graph-Based Learning in NLP
نویسندگان
چکیده
Graph-based semi-supervised learning has recently emerged as a promising approach to data-sparse learning problems in natural language processing. All graph-based algorithms rely on a graph that jointly represents labeled and unlabeled data points. The problem of how to best construct this graph remains largely unsolved. In this paper we introduce a data-driven method that optimizes the representation of the initial feature space for graph construction by means of a supervised classifier. We apply this technique in the framework of label propagation and evaluate it on two different classification tasks, a multi-class lexicon acquisition task and a word sense disambiguation task. Significant improvements are demonstrated over both label propagation using conventional graph construction and state-of-the-art supervised classifiers.
منابع مشابه
Inference Driven Metric Learning (IDML) for Graph Construction
Graph-based semi-supervised learning (SSL) methods usually consist of two stages: in the first stage, a graph is constructed from the set of input instances; and in the second stage, the available label information along with the constructed graph is used to assign labels to the unlabeled instances. Most of the previously proposed graph construction methods are unsupervised in nature, as they i...
متن کاملInference Driven Metric Learning for Graph Construction
Graph-based semi-supervised learning (SSL) methods usually consist of two stages: in the first stage, a graph is constructed from the set of input instances; and in the second stage, the available label information along with the constructed graph is used to assign labels to the unlabeled instances. Most of the previously proposed graph construction methods are unsupervised in nature, as they i...
متن کاملSupervised neighborhood graph construction for semi-supervised classification
Graph based methods are among the most active and applicable approaches studied in semi-supervised learning. The problem of neighborhood graph construction for these methods is addressed in this paper. Neighborhood graph construction plays a key role in the quality of the classification in graph based methods. Several unsupervised graph construction methods have been proposed that have addresse...
متن کاملTopics in Graph Construction for Semi-Supervised Learning
Graph-based Semi-Supervised Learning (SSL) methods have had empirical success in a variety of domains, ranging from natural language processing to bioinformatics. Such methods consist of two phases. In the first phase, a graph is constructed from the available data; in the second phase labels are inferred for unlabeled nodes in the constructed graph. While many algorithms have been developed fo...
متن کاملGraph-based Semi-Supervised Learning Algorithms for NLP
While labeled data is expensive to prepare, ever increasing amounts of unlabeled linguistic data are becoming widely available. In order to adapt to this phenomenon, several semi-supervised learning (SSL) algorithms, which learn from labeled as well as unlabeled data, have been developed. In a separate line of work, researchers have started to realize that graphs provide a natural way to repres...
متن کامل