Deep Learning for Forecasting Stock Returns in the Cross-Section

نویسندگان

  • Masaya Abe
  • Hideki Nakayama
چکیده

Many studies have been undertaken by using machine learning techniques, including neural networks, to predict stock returns. Recently, a method known as deep learning, which achieves high performance mainly in image recognition and speech recognition, has attracted attention in the machine learning field. This paper implements deep learning to predict one-month-ahead stock returns in the cross-section in the Japanese stock market and investigates the performance of the method. Our results show that deep neural networks generally outperform shallow neural networks, and the best networks also outperform representative machine learning models. These results indicate that deep learning shows promise as a skillful machine learning method to predict stock returns in the cross-section.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Stock Return Forecasting by Deep Learning Algorithm

Improving return forecasting is very important for both investors and researchers in financial markets. In this study we try to aim this object by two new methods. First, instead of using traditional variable, gold prices have been used as predictor and compare the results with Goyal's variables. Second, unlike previous researches new machine learning algorithm called Deep learning (DP) has bee...

متن کامل

Provide a stock price forecasting model using deep learning algorithms and its use in the pricing of Islamic bank stocks

Predicting stock prices is complicated; various components, such as the general state of the economy, political events, and investor expectations, affect the stock market. The stock market is in fact a chaotic nonlinear system that depends on various political, economic and psychological factors. To overcome the limitations of traditional analysis techniques in predicting nonlinear patterns, ex...

متن کامل

Nonlinear Model Improves Stock Return Out of Sample Forecasting (Case Study: United State Stock Market)

Improving out-of-sample forecasting is one of the main issues in financial research. Previous studies have achieved this objective by increasing the number of input variables or changing the kind of input variables. Changing the forecasting model is another possible approach to improve out-of-sample forecasting. Most researches have focused on linear models, while few have studied nonlinear mod...

متن کامل

Evidence of predictability in the cross-section of bank stock returns

In this paper, we examine the predictability of the cross-section of bank stock returns by taking advantage of the unique set of industry characteristics that prevail in the financial services sector. We examine predictability in the cross-section of bank stock returns using information contained in individual bank fundamental variables such as income from derivative usage, previous loan commit...

متن کامل

Time-Varying Risk Premia and The Cross Section of Stock Returns

This paper develops and estimates a heteroskedastic variant of Campbell s [Campbell, J., 1993. Intertemporal asset pricing without consumption data. American Economic Review 83, 487–512] ICAPM, in which risk factors include a stock market return and variables forecasting stock market returns or variance. Our main innovation is the use of a new set of predictive variables, which not only have su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.01777  شماره 

صفحات  -

تاریخ انتشار 2017