Location3: How Users Share and Respond to Location-Based Data on Social
نویسندگان
چکیده
In August 2010 Facebook launched Places, a locationbased service that allows users to check into points of interest and share their physical whereabouts with friends. The friends who see these events in their News Feed can then respond to these check-ins by liking or commenting on them. These data consisting of the places people go and how their friends react to them are a rich, novel dataset. In this paper we first analyze this dataset to understand the factors that influence where users check in, including previous check-ins, similarity to other places, where their friends check in, time of day, and demographics. We show how these factors can be used to build a predictive model of where users will check in next. Then we analyze how users respond to their friends’ check-ins and which factors contribute to users liking or commenting on them. We show how this can be used to improve the ranking of check-in stories, ensuring that users see only the most relevant updates from their friends and ensuring that businesses derive maximum value from check-ins at their establishments. Finally, we construct a model to predict friendship based on check-in count and show that co-checkins has a statistically significant effect on friendship.
منابع مشابه
Location: How Users Share and Respond to Location-Based Data on Social Networking Sites
In August 2010 Facebook launched Places, a locationbased service that allows users to check into points of interest and share their physical whereabouts with friends. The friends who see these events in their News Feed can then respond to these check-ins by liking or commenting on them. These data consisting of the places people go and how their friends react to them are a rich, novel dataset. ...
متن کاملA Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information
The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...
متن کاملPrediction of Instagram Social Network Addiction Based on the Personality, Alexithymia and Attachment Styles
Instagram is the fastest growing social network site globally. Instagram is an online, mobile phone photo-sharing, video-sharing, and social network service that enables its users to take pictures and videos, and then share them on other platforms. The purpose of this study is to distinguish the student’s Instagram social network addiction by personality, alexithymia and attachment styles...
متن کاملInvestigating the Effect of Social Business Characteristics on Trust and Willingness to Partnership
Objective Social business is a sub-category of electronic business that seeks social, innovative and cooperative approaches within online markets and also uses social media to attract social partnership and cooperation of such network users to support online purchasing and services. Trust is considered as an effective factor leading to successful social business. Because of the growing populari...
متن کاملSolving the ridesharing problem with Non-homogeneous vehicles by using an improved genetic algorithm and the social preferences of the users
Most existing ridesharing systems perform travel planning based only on two criteria of spatial and temporal similarity of travelers. In general, neglecting the social preferences caused to reduce users' willingness to use ridesharing services. To achieve this purpose a system should be designed and implemented not just based on two necessary conditions of spatial and temporal similarities, but...
متن کامل