Bile salt exposure increases proliferation through p38 and ERK MAPK pathways in a non-neoplastic Barrett's cell line.
نویسندگان
چکیده
Bile reflux has been implicated in the neoplastic progression of Barrett's esophagus (BE). Bile salts increase proliferation in a Barrett's-associated adenocarcinoma cell line (SEG-1 cells) by activating ERK and p38 MAPK pathways. However, it is not clear that these findings in cancer cells are applicable to non-neoplastic cells of benign BE. We examined the effect of bile salts on three human cell lines: normal esophageal squamous (NES) cells, non-neoplastic Barrett's cells (BAR cells), and SEG-1 cells. We hypothesized that bile salt exposure activates proproliferative and antiapoptotic pathways to promote increased growth in BE. NES, BAR, and SEG-1 cells were exposed to glycochenodeoxycholic acid (GCDA) at a neutral pH for 5 min. Proliferation was measured by Coulter counter cell counts and a 5-bromo-2'-deoxyuridine (BrdU) incorporation assay. GCDA-induced MAPK activation was examined by Western blot analysis for phosphorylated ERK and p38. Apoptosis was measured by TdT-mediated dUTP nick-end labeling and annexin V staining after GCDA and UV-B exposure. Statistical significance was determined by ANOVA. NES cells exposed to 5 min of GCDA did not increase cell number. In BAR cells, GCDA exposure increased cell number by 31%, increased phosphorylated p38 and ERK levels by two- to three-fold, increased BrdU incorporation by 30%, and decreased UV-induced apoptosis by 15-20%. In conclusion, in a non-neoplastic Barrett's cell line, GCDA exposure induces proliferation by activation of both ERK and p38 MAPK pathways. These findings suggest a potential mechanism whereby bile reflux may facilitate the neoplastic progression of BE.
منابع مشابه
Acid increases proliferation via ERK and p38 MAPK-mediated increases in cyclooxygenase-2 in Barrett's adenocarcinoma cells.
Cyclooxygenase-2 (COX-2) has been linked to neoplastic progression in Barrett's esophagus. Acid exposure has been shown both to activate the MAPK pathways and to increase COX-2 protein expression in Barrett's metaplasia, but it is not known whether these effects are interrelated. We hypothesized that acid-induced activation of the MAPK pathways mediates an increase in COX-2 expression in Barret...
متن کاملAcid increases MAPK-mediated proliferation in Barrett's esophageal adenocarcinoma cells via intracellular acidification through a Cl-/HCO3- exchanger.
Abundant epidemiological evidence links acid reflux to adenocarcinoma in Barrett's esophagus, but few studies have examined the cellular mechanisms by which acid promotes this neoplastic progression. We hypothesized that extracellular acid exposure causes intracellular acidification that triggers MAPK signaling and proliferation in Barrett's epithelial cells. We tested that hypothesis in a Barr...
متن کاملTranslational Physiology TRANSLATIONAL PHYSIOLOGY Acid increases MAPK-mediated proliferation in Barrett’s esophageal adenocarcinoma cells via intracellular acidification through a Cl /HCO3 exchanger
Sarosi, George A., Jr., Kshama Jaiswal, Emily Herndon, Christie Lopez-Guzman, Stuart J. Spechler, and Rhonda F. Souza. Acid increases MAPK-mediated proliferation in Barrett’s esophageal adenocarcinoma cells via intracellular acidification through a Cl /HCO3 exchanger. Am J Physiol Gastrointest Liver Physiol 289: G991–G997, 2005. First published August 4, 2005; doi:10.1152/ajpgi.00215.2005.—Abun...
متن کاملGene expression changes associated with Barrett's esophagus and Barrett's-associated adenocarcinoma cell lines after acid or bile salt exposure
BACKGROUND Esophageal reflux and Barrett's esophagus represent two major risk factors for the development of esophageal adenocarcinoma. Previous studies have shown that brief exposure of the Barrett's-associated adenocarcinoma cell line, SEG-1, or primary cultures of Barrett's esophageal tissues to acid or bile results in changes consistent with cell proliferation. In this study, we determined ...
متن کاملSalidroside regulates the expressions of IL-6 and defensins in LPS-activated intestinal epithelial cells through NF-κB/MAPK and STAT3 pathways
Objective(s): To reveal the detailed mechanism underlying the functions of salidroside on the inflammation of intestinal epithelial cells during IBD.Materials and Methods: Quantitative real-time PCR was employed to assess the expression of IL-6, IL-10, and α-defensins 5 and 6. ELISA assay was performed to measure the secretion of IL-6 and IL-10. MTT assay was used to determine the cell viabilit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 290 2 شماره
صفحات -
تاریخ انتشار 2006