Data Mining for Biodiversity Prediction in Forests
نویسندگان
چکیده
There is international consensus on the key elements of sustainable forest management. Biological diversity has been recognised as one of them. This paper investigates the usefulness of terrestrial laser scanning technology in forest biodiversity assessment. Laser scanning is a rapidly emerging technology that captures high-resolution, 3-D structural information about forests and presently has applications in standing timber measurement. Forest biodiversity is influenced by structural complexity in the forest although precise repeatable measures are difficult to achieve using traditional methods. The aim of the research presented here is to apply laser scanning technology to the assessment of forest structure and deadwood, and relate this information to the diversity of plants, invertebrates and birds in a range of forest types including native woodlands and commercial plantations. Procedures for forest biodiversity assessment are known to be expensive due to their reliance on labour-intensive field visits. We describe our progress on the application of terrestrial laser scanning in an automated approach to biodiversity assessment. We apply regression techniques from the field of data mining to predict several biodiversity measures using physical attributes of the forest with very promising results.
منابع مشابه
Energy Efficient Data Mining Scheme for Big Data Biodiversity Environment
In this paper, we propose a novel energy efficient data mining scheme for big data biodiversity environment. Efficient machine learning and data mining techniques provide an unprecedented opportunity to monitor and characterize big data biodiversity environments, such as forest cover type, monitored using low cost wireless sensor networks. However, given the sheer amount of data collected by th...
متن کاملBIODIVERSITY OF WOODY SPECIES IN Acer platanoides SITES IN THE SHAFAROUD FORESTS, GILAN (IRAN)
In this research, biodiversity was investigated in the species diversity level. The objective of this research was to study of Norway Maple (Acer platanoides L.) dispersion and biodiversity of associated woody species in the Shafaroud forests, Gilan (IRAN). In this regard, a 0.5 ha lozenge sample plot was selected with considering presence of Norway Maple in each site. In each plot, geographic ...
متن کاملPersonal Credit Score Prediction using Data Mining Algorithms (Case Study: Bank Customers)
Knowledge and information extraction from data is an age-old concept in scientific studies. In industrial decision-making processes, the application of this concept gives rise to data-mining opportunities. Personal credit scoring is an ever-vital tool for banking systems in order to manage and minimize the inherent risks of the financial sector, thus, the design and improvement of credit scorin...
متن کاملData Mining of High Accuracy for the Efficiency in the Task of Massive Printing
Random forests are known to be robust for missing and erroneous data as well as irrelevant features. Moreover, even though the forests have many trees, they can utilize the fast building property of decision trees, so they do not require much computing time. In this paper an efficient procedure that utilizes random forests to predict the cylinder bands in rotogravure printing is shown. Even tho...
متن کاملUsing Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach
Heart disease is one of the major causes of morbidity in the world. Currently, large proportions of healthcare data are not processed properly, thus, failing to be effectively used for decision making purposes. The risk of heart disease may be predicted via investigation of heart disease risk factors coupled with data mining knowledge. This paper presents a model developed using combined descri...
متن کامل