Framed Discs Operads and Batalin–vilkovisky Algebras
نویسندگان
چکیده
The framed n-discs operad f Dn is studied as semidirect product of SO(n) and the little n-discs operad. Our equivariant recognition principle says that a grouplike space acted on by f Dn is equivalent to the n-fold loop space on an SO(n)-space. Examples of f D2-spaces are nerves of ribbon braided monoidal categories. We compute the rational homology of f Dn , which produces higher Batalin–Vilkovisky algebra structures for n even. We study quadratic duality for semidirect product operads and compute the double loop space homology of a manifold as BV-algebra.
منابع مشابه
Operadic Formulation of Topological Vertex Algebras and Gerstenhaber or Batalin-vilkovisky Algebras
We give the operadic formulation of (weak, strong) topological vertex algebras, which are variants of topological vertex operator algebras studied recently by Lian and Zuckerman. As an application, we obtain a conceptual and geometric construction of the Batalin-Vilkovisky algebraic structure (or the Gerstenhaber algebra structure) on the cohomology of a topological vertex algebra (or of a weak...
متن کاملDeformations of Batalin–vilkovisky Algebras
We show that a graded commutative algebra A with any square zero odd differential operator is a natural generalization of the Batalin–Vilkovisky algebra. While such an operator of order 2 defines a Lie algebra structure on A, an operator of an order higher than 2 (Koszul–Akman definition) leads to the structure of a strongly homotopy Lie algebra (L∞–algebra) on A. This allows us to give a defin...
متن کاملTopological Field Theories and Geometry of Batalin-Vilkovisky Algebras
We analyze the algebraic and geometric structures of deformations of Schwarz type topological field theories. Deformations of the Chern-Simons-BF theory and BF theories in n dimensions are analyzed. Two dimensionanl theory induces the Poisson structure and three dimensional theory induces the Courant algebroid structure on the target space as a sigma model. We generalize these structures to hig...
متن کاملOn Operad Structures of Moduli Spaces and String Theory
We construct a real compactification of the moduli space of punctured rational algebraic curves and show how its geometry yields operads governing homotopy Lie algebras, gravity algebras and Batalin-Vilkovisky algebras. These algebras appeared recently in the context of string theory, and we give a simple deduction of these algebraic structures from the formal axioms of conformal field theory a...
متن کاملIsomorphisms between the Batalin-Vilkovisky antibracket and the Poisson bracket
One may introduce at least three different Lie algebras in any Lagrangian field theory : (i) the Lie algebra of local BRST cohomology classes equipped with the odd Batalin-Vilkovisky antibracket, which has attracted considerable interest recently ; (ii) the Lie algebra of local conserved currents equipped with the Dickey bracket ; and (iii) the Lie algebra of conserved, integrated charges equip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001