Reinforcement Learning with Imitation in Heterogeneous Multi-Agent Systems
نویسندگان
چکیده
The application of decision making and learning algorithms to multi-agent systems presents many interestingresearch challenges and opportunities. Among these is the ability for agents to learn how to act by observing or imitating other agents. We describe an algorithm, the IQ-algorithm, that integrates imitation with Q-learning. Roughly, a Q-learner uses the observations it has made of an “expert” agent to bias its exploration in promising directions. This algorithm goes beyond previous work in this direction by relaxing the oft-made assumptions that the learner (observer) and the expert (observed agent) share the same objectives and abilities. Our preliminary experiments demonstrate significant transfer between agents using the IQ-model and in many cases reductions in training time.
منابع مشابه
Embodied imitation-enhanced reinforcement learning in multi-agent systems
Imitation is an example of social learning in which an individual observes and copies another’s actions. This paper presents a new method for using imitation as a way of enhancing the learning speed of individual agents that employ a well-known reinforcement learning algorithm, namely Q-learning. Compared to other research that uses imitation with reinforcement learning, our method uses imitati...
متن کاملVoltage Coordination of FACTS Devices in Power Systems Using RL-Based Multi-Agent Systems
This paper describes how multi-agent system technology can be used as the underpinning platform for voltage control in power systems. In this study, some FACTS (flexible AC transmission systems) devices are properly designed to coordinate their decisions and actions in order to provide a coordinated secondary voltage control mechanism based on multi-agent theory. Each device here is modeled as ...
متن کاملA Bayesian Approach to Imitation in Reinforcement Learning
In multiagent environments, forms of social learning such as teaching and imitation have been shown to aid the transfer of knowledge from experts to learners in reinforcement learning (RL). We recast the problem of imitation in a Bayesian framework. Our Bayesian imitation model allows a learner to smoothly pool prior knowledge, data obtained through interaction with the environment, and informa...
متن کاملAdaptive Cost-Based Policy Mapping for Imitation
ADAPTIVE COST-BASED POLICY MAPPING FOR IMITATION Publication No. ______ SRICHANDAN VENKAT GUDLA, M.S. The University of Texas at Arlington, 2003 Supervising Professor: Manfred Huber Imitation represents a powerful approach for programming and autonomous learning in robot and computer systems. An important aspect of imitation is the mapping of observations to an executable control strategy. This...
متن کاملVision-Based Imitation Learning in Heterogeneous Multi-Robot Systems: Varying Physiology and Skill
Imitation learning enables a learner to improve its abilities by observing others. Most robotic imitation learning systems only learn from demonstrators that are similar physically and in terms of skill level. In order to employ imitation learning in a heterogeneous multi-agent environment, we must consider both differences in skill, and physical differences (physiology, size). This paper descr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007