Better Learning of Supervised Neural Networks Based on Functional Graph – An Experimental Approach
نویسنده
چکیده
Multilayered feed forward neural networks possess a number of properties which make them particularly suited to complex problems. Neural networks have been in use in numerous meteorological applications including weather forecasting. As Neural Networks are being more and more widely used in recent years, the need for their more formal definition becomes increasingly apparent. This paper presents a novel architecture of neural network models using the functional graph. The neural network creates a graph representation by dynamically allocating nodes to code local form attributes and establishing arcs to link them. The application of functional graph in the architecture of Electronic neural network and Opto-electronic neural network is detailed with experimental results. Learning is defined in terms of functional graph. The proposed architectures are applied in weather forecasting and X-OR problem. The weather forecasting has been carried out based on various factors consolidated from meteorological experts and documents. The inputs are temperature, air pressure, humidity, cloudiness, precipitation, wind direction, wind speed, etc., and outputs are heavy rain, moderate rain and no rain. The percentage of correctness of the weather forecasting of the conventional neural network models, functional graph based neural network models and the meteorological experts are compared.
منابع مشابه
Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملطبقه بندی و شناسایی رخسارههای زمینشناسی با استفاده از دادههای لرزه نگاری و شبکههای عصبی رقابتی
Geological facies interpretation is essential for reservoir studying. The method of classification and identification seismic traces is a powerful approach for geological facies classification and distinction. Use of neural networks as classifiers is increasing in different sciences like seismic. They are computer efficient and ideal for patterns identification. They can simply learn new algori...
متن کاملSemi-supervised Learning for Convolutional Neural Networks via Online Graph Construction
The recent promising achievements of deep learning rely on the large amount of labeled data. Considering the abundance of data on the web, most of them do not have labels at all. Therefore, it is important to improve generalization performance using unlabeled data on supervised tasks with few labeled instances. In this work, we revisit graph-based semi-supervised learning algorithms and propose...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملA New Approach to Link Prediction in Gene Regulatory Networks
Link prediction is an important data mining problem that has many applications in different domains such as social network analysis and computational biology. For example, biologists model gene regulatory networks (GRNs) as directed graphs where nodes are genes and links show regulatory relationships between the genes. By predicting links in GRNs, biologists can gain a better understanding of t...
متن کامل