An extension of q-zeta function

نویسندگان

  • Taekyun Kim
  • Lee-Chae Jang
  • Seog-Hoon Rim
چکیده

We will define the extension of q-Hurwitz zeta function due to Kim and Rim (2000) and study its properties. Finally, we lead to a useful new integral representation for the q-zeta function. 1. Introduction. Let 0 < q < 1 and for any positive integer k, define its q-analogue [k] q = (1 − q k)/(1 − q). Let C be the field of complex numbers. The q-zeta function due

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the q-Extension of Apostol-Euler Numbers and Polynomials

Recently, Choi et al. 2008 have studied the q-extensions of the Apostol-Bernoulli and the ApostolEuler polynomials of order n and multiple Hurwitz zeta function. In this paper, we define Apostol’s type q-Euler numbers En,q,ξ and q-Euler polynomials En,q,ξ x . We obtain the generating functions of En,q,ξ and En,q,ξ x , respectively. We also have the distribution relation for Apostol’s type q-Eul...

متن کامل

6 F eb 2 00 4 MULTIPLE q - ZETA VALUES

We introduce a q-analog of the multiple harmonic series commonly referred to as multiple zeta values. The multiple q-zeta values satisfy a q-stuffle multiplication rule analogous to the stuffle multiplication rule arising from the series representation of ordinary multiple zeta values. Additionally, multiple q-zeta values can be viewed as special values of the multiple q-polylogarithm, which ad...

متن کامل

Multiple q-zeta values

We introduce a q-analog of the multiple harmonic series commonly referred to as multiple zeta values. The multiple q-zeta values satisfy a q-stuffle multiplication rule analogous to the stuffle multiplication rule arising from the series representation of ordinary multiple zeta values. Additionally, multiple q-zeta values can be viewed as special values of the multiple q-polylogarithm, which ad...

متن کامل

Note on q-Extensions of Euler Numbers and Polynomials of Higher Order

In [14] Ozden-Simsek-Cangul constructed generating functions of higher-order twisted (h, q)-extension of Euler polynomials and numbers, by using p-adic q-deformed fermionic integral on Zp. By applying their generating functions, they derived the complete sums of products of the twisted (h, q)-extension of Euler polynomials and numbers, see[13, 14]. In this paper we cosider the new q-extension o...

متن کامل

Multidimensional extension of the generalized Chowla–Selberg formula

After recalling the precise existence conditions of the zeta function of a pseudodifferential operator, and the concept of reflection formula, an exponentially convergent expression for the analytic continuation of a multidimensional inhomogeneous Epstein-type zeta function of the general form ζA,~b,q(s) = ∑ ~n∈Z (~nA~n+~b~n+ q)−s, with A the p× p matrix of a quadratic form, ~b a p vector and q...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2004  شماره 

صفحات  -

تاریخ انتشار 2004