Characterization of a sulfur-regulated oxygenative alkylsulfatase from Pseudomonas putida S-313.
نویسندگان
چکیده
The atsK gene of Pseudomonas putida S-313 was required for growth with alkyl sulfate esters as sulfur source. The AtsK protein was overexpressed in Escherichia coli and purified to homogeneity. Sequence analysis revealed that AtsK was closely related to E. coli taurine dioxygenase (38% amino acid identity). The AtsK protein catalyzed the alpha-ketoglutarate-dependent cleavage of a range of alkyl sulfate esters, with chain lengths ranging from C(4) to C(12), required oxygen and Fe(2+) for activity and released succinate, sulfate, and the corresponding aldehyde as products. Enzyme activity was optimal at pH 7 and was strongly stimulated by ascorbate. Unlike most other characterized alpha-ketoglutarate-dependent dioxygenases, AtsK accepted a range of alpha-keto acids as co-substrates, including alpha-ketoglutarate (K(m) 140 microm), alpha-ketoadipate, alpha-ketovalerate, and alpha-ketooctanoate. The measured K(m) values for hexyl sulfate and SDS were 40 and 34 microm, respectively. The apparent M(r) of the purified enzyme of 121,000 was consistent with a homotetrameric structure, which is unusual for this enzyme superfamily, members of which are usually monomeric or dimeric. The properties and amino acid sequence of the AtsK enzyme thus define it as an unusual oxygenolytic alkylsulfatase and a novel member of the alpha-ketoglutarate-dependent dioxygenase family.
منابع مشابه
Pathways of assimilative sulfur metabolism in Pseudomonas putida.
Cysteine and methionine biosynthesis was studied in Pseudomonas putida S-313 and Pseudomonas aeruginosa PAO1. Both these organisms used direct sulfhydrylation of O-succinylhomoserine for the synthesis of methionine but also contained substantial levels of O-acetylserine sulfhydrylase (cysteine synthase) activity. The enzymes of the transsulfuration pathway (cystathionine gamma-synthase and cyst...
متن کاملThe ssu locus plays a key role in organosulfur metabolism in Pseudomonas putida S-313.
Pseudomonas putida S-313 can utilize a broad range of aromatic sulfonates as sulfur sources for growth in sulfate-free minimal medium. The sulfonates are cleaved monooxygenolytically to yield the corresponding phenols. miniTn5 mutants of strain S-313 which were no longer able to desulfurize arylsulfonates were isolated and were found to carry transposon insertions in the ssuEADCBF operon, which...
متن کاملThe Enhancement of Biodesulfurization Activity in a Novel Indigenous Engineered Pseudomonas putida
Background: The combustion of sulfur-rich fossil fuels leads to release of sulfur oxide pollution in the environment. In biodesulfurization process, an organism is able to remove sulfur from fossil fuels without decreasing the caloric value of those substrates. The main aim of this research was to design a recombinant microorganism to remove the highest amount of sulfur compounds in fossil fuel...
متن کاملImportance of organosulfur utilization for survival of Pseudomonas putida in soil and rhizosphere.
The sulfur present in both agricultural and uncultivated soils is largely in the form of sulfonates and sulfate esters and not as free, bioavailable inorganic sulfate. Desulfurization of the former compounds in vitro has previously been studied in Pseudomonas putida, a common rhizosphere inhabitant. Survival of P. putida strains was now investigated in three sulfur-deficient Danish soils which ...
متن کاملIsolation, Purification and Characterization of Proline Dehydrogenase from a Pseudomonas putida POS-F84 Isolate
The purpose of this study was to isolate and characterize Proline Dehydrogenase (ProDH) enzyme frommicroorganisms isolated from soil in Iran. Isolation and screening of L-proline degradative enzymes from soilsamples was carried out. The isolate was characterized by biochemical markers and 16S rRNA geneanalysis. The target ProDH was purified and the effects of pH and temperatur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 275 41 شماره
صفحات -
تاریخ انتشار 2000