RNA-sequencing-based transcriptome and biochemical analyses of steroidal saponin pathway in a complete set of Allium fistulosum—A. cepa monosomic addition lines

نویسندگان

  • Mostafa Abdelrahman
  • Magdi El-Sayed
  • Shusei Sato
  • Hideki Hirakawa
  • Shin-Ichi Ito
  • Keisuke Tanaka
  • Yoko Mine
  • Nobuo Sugiyama
  • Yutaka Suzuki
  • Naoki Yamauchi
  • Masayoshi Shigyo
چکیده

The genus Allium is a rich source of steroidal saponins, and its medicinal properties have been attributed to these bioactive compounds. The saponin compounds with diverse structures play a pivotal role in Allium's defense mechanism. Despite numerous studies on the occurrence and chemical structure of steroidal saponins, their biosynthetic pathway in Allium species is poorly understood. The monosomic addition lines (MALs) of the Japanese bunching onion (A. fistulosum, FF) with an extra chromosome from the shallot (A. cepa Aggregatum group, AA) are powerful genetic resources that enable us to understand many physiological traits of Allium. In the present study, we were able to isolate and identify Alliospiroside A saponin compound in A. fistulosum with extra chromosome 2A from shallot (FF2A) and its role in the defense mechanism against Fusarium pathogens. Furthermore, to gain molecular insight into the Allium saponin biosynthesis pathway, high-throughput RNA-Seq of the root, bulb, and leaf of AA, MALs, and FF was carried out using Illumina's HiSeq 2500 platform. An open access Allium Transcript Database (Allium TDB, http://alliumtdb.kazusa.or.jp) was generated based on RNA-Seq data. The resulting assembled transcripts were functionally annotated, revealing 50 unigenes involved in saponin biosynthesis. Differential gene expression (DGE) analyses of AA and MALs as compared with FF (as a control) revealed a strong up-regulation of the saponin downstream pathway, including cytochrome P450, glycosyltransferase, and beta-glucosidase in chromosome 2A. An understanding of the saponin compounds and biosynthesis-related genes would facilitate the development of plants with unique saponin content and, subsequently, improved disease resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Establishment of a series of alien monosomic addition lines of Japanese bunching onion (Allium fistulosum L.) with extra chromosomes from shallot (A. cepa L. aggregatum group).

Forty one plants of alien monosomic addition lines of Allium fistulosum L. with extra chromosomes from A. cepa L. Aggregatum group (FF + nA) were produced through the second backcross of amphidiploids between these two species to A. fistulosum. Identification of the extra chromosomes in the 16 plants by elaborate karyotype analyses indicate that a complete series (eight different types) of the ...

متن کامل

Molecular and biochemical identification of alien chromosome additions in shallot (Allium cepa L. Aggregatum group) carrying extra chromosome(s) of bunching onion (A. fistulosum L.).

To develop the bunching onion (Allium fistulosum L.; genomes, FF) chromosome-specific genetic markers for identifying extra chromosomes, eight shallot (A. cepa L. Aggregatum group; genomes, AA)--A. fistulosum monosomic addition plants (AA+nF) and 62 shallot--A. fistulosum single-alien deletion plants (AAF-nF) were analyzed by 23 different chromosome-specific genetic markers of shallot. The eigh...

متن کامل

Biochemical analyses of the antioxidative activity and chemical ingredients in eight different Allium alien monosomic addition lines.

We measured the antioxidant contents and antioxidative activities in eight Allium fistulosum-shallot monosomic addition lines (MAL; FF+1A-FF+8A). The high antioxidative activity lines (FF+2A and FF+6A) showed high polyphenol accumulation. These additional chromosomes (2A and 6A) would therefore have anonymous genes related to the upregulation of polyphenol production, the antioxidative activiti...

متن کامل

Biochemical and genetic analysis of carbohydrate accumulation in Allium cepa L.

Onion and shallot (Allium cepa L.) exhibit wide variation in bulb fructan content, and the Frc locus on chromosome 8 conditions much of this variation. To understand the biochemical basis of Frc, we conducted biochemical and genetic analyses of Allium fistulosum (FF)-shallot (A. cepa Aggregatum group) alien monosomic addition lines (AALs; FF+1A-FF+8A) and onion mapping populations. Sucrose and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017