Spectral Compressed Sensing via CANDECOMP/PARAFAC Decomposition of Incomplete Tensors
نویسندگان
چکیده
We consider the line spectral estimation problem which aims to recover a mixture of complex sinusoids from a small number of randomly observed time domain samples. Compressed sensing methods formulates line spectral estimation as a sparse signal recovery problem by discretizing the continuous frequency parameter space into a finite set of grid points. Discretization, however, inevitably incurs errors and leads to deteriorated estimation performance. In this paper, we propose a new method which leverages recent advances in tensor decomposition. Specifically, we organize the observed data into a structured tensor and cast line spectral estimation as a CANDECOMP/PARAFAC (CP) decomposition problem with missing entries. The uniqueness of the CP decomposition allows the frequency components to be super-resolved with infinite precision. Simulation results show that the proposed method provides a competitive estimate accuracy compared with existing state-of-the-art algorithms.
منابع مشابه
Tensor Deflation for CANDECOMP/PARAFAC. Part 3: Rank Splitting
CANDECOMP/PARAFAC (CPD) approximates multiway data by sum of rank-1 tensors. Our recent study has presented a method to rank-1 tensor deflation, i.e. sequential extraction of the rank-1 components. In this paper, we extend the method to block deflation problem. When at least two factor matrices have full column rank, one can extract two rank-1 tensors simultaneously, and rank of the data tensor...
متن کاملAn Algebraic Solution for the Candecomp/PARAFAC Decomposition with Circulant Factors
The Candecomp/PARAFAC decomposition (CPD) is an important mathematical tool used in several fields of application. Yet, its computation is usually performed with iterative methods which are subject to reaching local minima and to exhibiting slow convergence. In some practical contexts, the data tensors of interest admit decompositions constituted by matrix factors with particular structure. Oft...
متن کاملCramér-Rao-Induced Bounds for CANDECOMP/PARAFAC Tensor Decomposition
This paper presents a Cramér-Rao lower bound (CRLB) on the variance of unbiased estimates of factor matrices in Canonical Polyadic (CP) or CANDECOMP/PARAFAC (CP) decompositions of a tensor from noisy observations, (i.e., the tensor plus a random Gaussian i.i.d. tensor). A novel expression is derived for a bound on the mean square angular error of factors along a selected dimension of a tensor o...
متن کاملOn Generic Nonexistence of the Schmidt-Eckart-Young Decomposition for Complex Tensors
The Schmidt-Eckart-Young theorem for matrices states that the optimal rank-r approximation to a matrix is obtained by retaining the first r terms from the singular value decomposition of that matrix. This work considers a generalization of this optimal truncation property to the CANDECOMP/PARAFAC decomposition of tensors and establishes a necessary orthogonality condition. We prove that this co...
متن کاملVectorial Dimension Reduction for Tensors Based on Bayesian Inference
Dimensionality reduction for high-order tensors is a challenging problem. In conventional approaches, higher order tensors are “vectorized” via Tucker decomposition to obtain lower order tensors. This will destroy the inherent high-order structures or resulting in undesired tensors, respectively. This paper introduces a probabilistic vectorial dimensionality reduction model for tensorial data. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1512.03224 شماره
صفحات -
تاریخ انتشار 2015