Fuzzy Graph Clustering based on Non-Euclidean Relational Fuzzy c-Means
نویسندگان
چکیده
Graph clustering is a very popular research field with numerous practical applications. Here we focus on finding fuzzy clusters of nodes in unweighted, undirected, and irreflexive graphs. We introduce three new algorithms for fuzzy graph clustering (Newman–Girvan NERFCM, Small World NERFCM, Signal NERFCM). Each of these three new algorithms uses a popular algorithm for crisp graph clustering and combines it with non–Euclidean relational fuzzy c–means clustering (NERFCM). Experiments with artificial and real world data indicate that all three proposed algorithms perform quite well for compact clusters. For less compact clusters, Newman–Girvan NERFCM and Signal NERFCM also perform well. Newman–Girvan NERFCM is more robust to cluster overlaps, and Signal NERFCM yields very smooth membership transitions.
منابع مشابه
Robust Extension of FCMdd-based Linear Clustering for Relational Data using Alternative c -Means Criterion
Relational clustering is an extension of clustering for relational data. Fuzzy c-Medoids (FCMdd) based linear fuzzy clustering extracts intrinsic local linear substructures from relational data. However this linear clustering was affected by noise or outliers because of using Euclidean distance. Alternative Fuzzy c-Means (AFCM) is an extension of Fuzzy c-means, in which a modified distance meas...
متن کاملKernelized Non-Euclidean Relational c-Means Algorithms
Successes with kernel-based classification methods have spawned many recent efforts to kernelize clustering algorithms for object data. We extend this idea to the relational data case by proposing kernelized forms of the non-Euclidean relational fuzzy (NERF) and hard (NERH) c-means algorithms. We show that these relational forms are dual to kernelized forms of fuzzy and hard c-means (FCM, HCM) ...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملImprovements to the relational fuzzy c-means clustering algorithm
Relational fuzzy c-means (RFCM) is an algorithm for clustering objects represented in a pairwise dissimilarity values in a dissimilarity data matrix D. RFCM is dual to the fuzzy c-means (FCM) object data algorithm when D is a Euclidean matrix. When D is not Euclidean, RFCM can fail to execute if it encounters negative relational distances. To overcome this problem we can Euclideanize the relati...
متن کاملBilateral Weighted Fuzzy C-Means Clustering
Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...
متن کامل