An Innovative Multiple-Object Image Retrieval Framework Using Hierarchical Region Tree

نویسندگان

  • Wei-bang Chen
  • Chengcui Zhang
چکیده

Inaccurate image segmentation often has a negative impact on object-based image retrieval. Researchers have attempted to alleviate this problem by using hierarchical image representation. However, these attempts suffer from the inefficiency in building the hierarchical image representation and the high computational complexity in matching two hierarchically represented images. This paper presents an innovative multiple-object retrieval framework named Multiple-Object Image Retrieval (MOIR) on the basis of hierarchical image representation. This framework concurrently performs image segmentation and hierarchical tree construction, producing a hierarchical region tree to represent the image. In addition, an efficient hierarchical region tree matching algorithm is designed for multiple-object retrieval with a reasonably low time complexity. The experimental results demonstrate the efficacy and efficiency of the proposed approach. An Innovative Multiple-Object Image Retrieval Framework Using Hierarchical Region Tree

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest

This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...

متن کامل

Hierarchical Discriminant Analysis for Image Retrieval

A self-organizing framework for object recognition is described. We describe a hierarchical database structure for image retrieval. The Self-Organizing Hierarchical Optimal Subspace Learning and Inference Framework (SHOSLIF) system uses the theories of optimal linear projection for automatic optimal feature derivation and a hierarchical structure to achieve a logarithmic retrieval complexity. A...

متن کامل

Hierarchical Discriminant Analysis for ImageRetrievalDaniel

A self-organizing framework for object recognition is described. We describe a hierarchical database structure for image retrieval. The SHOSLIF (Self-Organizing Hierarchical Optimal Subspace Learning and Inference Framework) system uses the theories of optimal linear projection for automatic optimal feature derivation and a hierarchical structure to achieve a logarithmic retrieval complexity. A...

متن کامل

Semiautomatic Image Retrieval Using the High Level Semantic Labels

Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...

متن کامل

Hierarchical Discriminant Analysis for

|A self-organizing framework for object recognition is described. We describe a hierarchical database structure for image retrieval. The SHOSLIF (Self-Organizing Hierarchical Optimal Subspace Learning and Inference Framework) system uses the theories of optimal linear projection for automatic optimal feature selection and a hierarchical structure to achieve a logarithmic retrieval complexity. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJMDEM

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013