Maritime Threat Detection Using Probabilistic Graphical Models
نویسندگان
چکیده
Maritime threat detection is a challenging problem because maritime environments can involve a complex combination of concurrent vessel activities, and only a small fraction of these may be irregular, suspicious, or threatening. Previous work on this task has been limited to analyses of single vessels using simple rule-based models that alert watchstanders when a proximity threshold is breached. We claim that Probabilistic Graphical Models (PGMs) can be used to more effectively model complex maritime situations. In this paper, we study the performance of PGMs for detecting (small boat) maritime attacks. We describe three types of PGMs that vary in their representational expressiveness and evaluate them on a threat recognition task using track data obtained from force protection naval exercises involving unmanned sea surface vehicles. We found that the best-performing PGMs can outperform the deployed rule-based approach on these tasks, though some PGMs require substantial engineering and are computationally expensive.
منابع مشابه
Rule-based joint fuzzy and probabilistic networks
One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...
متن کاملLearning and Leveraging Context for Maritime Threat Analysis: Vessel Classification using Exemplar-SVM
Modern fleet security requires accurate threat analysis in real-time, which relies on a range of contextual information (e.g., vessel size, speed, heading, etc.). Rich contextualization may be possible using imaging systems if the images can be used to detect and classify maritime vessels and track their movements. In this work, the effectiveness of the ensemble of Exemplar-SVMs (E-SVM) object ...
متن کاملConditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملAn Introduction to Probabilistic Graphical Models for Relational Data
We survey some of the recent work on probabilistic graphical models for relational data. The models that we describe are all based upon ’graphical models’ [12]. The models can capture statistical correlations among attributes within a single relational table, between attributes in different tables, and can capture certain structural properties, such as the expected size of a join between tables...
متن کاملIntroduction to Probabilistic Graphical Models
Over the last decades, probabilistic graphical models have become the method of choice for representing uncertainty in machine learning. They are used in many research areas such as computer vision, speech processing, time-series and sequential data modelling, cognitive science, bioinformatics, probabilistic robotics, signal processing, communications and error-correcting coding theory, and in ...
متن کامل