Substrate rigidity regulates the formation and maintenance of tissues.

نویسندگان

  • Wei-hui Guo
  • Margo T Frey
  • Nancy A Burnham
  • Yu-li Wang
چکیده

The ability of cells to form tissues represents one of the most fundamental issues in biology. However, it is unclear what triggers cells to adhere to one another in tissues and to migrate once a piece of tissue is planted on culture surfaces. Using substrates of identical chemical composition but different flexibility, we show that this process is controlled by substrate rigidity: on stiff substrates, cells migrate away from one another and spread on surfaces, whereas on soft substrates they merge to form tissue-like structures. Similar behavior was observed not only with fibroblastic and epithelial cell lines but also explants from neonatal rat hearts. Cell compaction on soft substrates involves a combination of weakened adhesions to the substrate and myosin II-dependent contractile forces that drive cells toward one another. Our results suggest that tissue formation and maintenance is regulated by differential mechanical signals between cell-cell and cell-substrate interactions, which in turn elicit differential contractile forces and adhesions to determine the preferred direction of cell migration and association.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates.

The physical properties of the cellular environment are involved in regulating the formation and maintenance of tissues. In particular, substrate rigidity appears to be a key factor dictating cell response on culture surfaces. Here we study the behavior of epithelial cells cultured on microfabricated substrates engineered to exhibit an anisotropic stiffness. The substrate consists of a dense ar...

متن کامل

The miR-383-LDHA axis regulates cell proliferation, invasion and glycolysis in hepatocellular cancer

Objective(s): To explore the correlation between expression patterns and functions of miR-383 and LDHA in hepatocellular cancer (HCC). Materials and Methods: We detected the expression of miR-383 and LDHA in 30 HCC tissues and their matched adjacent normal tissues using qRT-PCR. Then we performed MTT assay, foci formation assay, transwell migration assay, glucose uptake assay and lactate produc...

متن کامل

O 7: KCNK2 Regulates the Nanoscale Formation of Immune Docking Structures on Brain Endothelial Cells Under Autoinflammatory Conditions

KCNK2 was previously shown to regulate immune-cell trafficking into the central nervous system (CNS). Kcnk2-/- mice demonstrated a more severe disease course in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, due to an increased immune-cell migration into the CNS. An upregulation of the cellular adhesion molecules ICAM1 and VCAM1 on brain endothelial cells in K...

متن کامل

Correction: ICAP-1 monoubiquitylation coordinates matrix density and rigidity sensing for cell migration through ROCK2-MRCKα balance.

Cell migration is a complex process requiring density and rigidity sensing of the microenvironment to adapt cell migratory speed through focal adhesion and actin cytoskeleton regulation. ICAP-1 (also known as ITGB1BP1), a β1 integrin partner, is essential for ensuring integrin activation cycle and focal adhesion formation. We show that ICAP-1 is monoubiquitylated bySmurf1, preventing ICAP-1bind...

متن کامل

CircRNA_0109291 regulates cell growth and migration in oral squamous cell carcinoma and its clinical significance

Objective(s): Circular RNAs (circRNAs), a new class of non-coding RNAs, have emerged as important regulators during tumorigenesis. However, the functions of circRNAs have not been completely clarified in the progression of cancers. In our study, a novel circRNA hsa_circ_0109291 was investigated in oral squamous cell carcinoma (OSCC) tissues and cell lines. Materials and Methods: The expression ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 90 6  شماره 

صفحات  -

تاریخ انتشار 2006