Maximal Periods of ( Ehrhart ) Quasi - Polynomials 3
نویسنده
چکیده
A quasi-polynomial is a function defined of the form q(k) = c d (k) k d + c d−1 (k) k d−1 + · · · + c0(k), where c0, c1,. .. , c d are periodic functions in k ∈ Z. Prominent examples of quasi-polynomials appear in Ehrhart's theory as integer-point counting functions for rational polytopes, and McMullen gives upper bounds for the periods of the cj (k) for Ehrhart quasi-polynomials. For generic polytopes, McMullen's bounds seem to be sharp, but sometimes smaller periods exist. We prove that the second leading coefficient of an Ehrhart quasi-polynomial always has maximal expected period and present a general theorem that yields maximal periods for the coefficients of certain quasi-polynomials. We present a construction for (Ehrhart) quasi-polynomials that exhibit maximal period behavior and use it to answer a question of Zaslavsky on convolutions of quasi-polynomials.
منابع مشابه
0 M ay 2 00 7 MAXIMAL PERIODS OF ( EHRHART ) QUASI - POLYNOMIALS
A quasi-polynomial is a function defined of the form q(k) = c d (k) k d + c d−1 (k) k d−1 + · · · + c0(k), where c0, c1,. .. , c d are periodic functions in k ∈ Z. Prominent examples of quasi-polynomials appear in Ehrhart's theory as integer-point counting functions for rational polytopes, and McMullen gives upper bounds for the periods of the cj (k) for Ehrhart quasi-polynomials. For generic p...
متن کاملMaximal periods of (Ehrhart) quasi-polynomials
A quasi-polynomial is a function defined of the form q(k) = cd(k) k d + cd−1(k) k d−1 + · · · + c0(k), where c0, c1, . . . , cd are periodic functions in k ∈ Z. Prominent examples of quasipolynomials appear in Ehrhart’s theory as integer-point counting functions for rational polytopes, and McMullen gives upper bounds for the periods of the cj(k) for Ehrhart quasi-polynomials. For generic polyto...
متن کاملCoefficient functions of the Ehrhart quasi-polynomials of rational polygons
In 1976, P. R. Scott characterized the Ehrhart polynomials of convex integral polygons. We study the same question for Ehrhart polynomials and quasi-polynomials of nonintegral convex polygons. Define a pseudo-integral polygon, or PIP, to be a convex rational polygon whose Ehrhart quasipolynomial is a polynomial. The numbers of lattice points on the interior and on the boundary of a PIP determin...
متن کاملA Finite Calculus Approach to Ehrhart Polynomials
A rational polytope is the convex hull of a finite set of points in Rd with rational coordinates. Given a rational polytope P ⊆ Rd, Ehrhart proved that, for t ∈ Z>0, the function #(tP ∩ Zd) agrees with a quasi-polynomial LP(t), called the Ehrhart quasi-polynomial. The Ehrhart quasi-polynomial can be regarded as a discrete version of the volume of a polytope. We use that analogy to derive a new ...
متن کاملFinding Bounds on Ehrhart Quasi-Polynomials
Numerous problems in program analysis, can be reduced to finding bounds on the number of integer points in a convex set, or the solution of a more general polyhedral counting problem. For a large class of applications the solution of such a counting problem can be expressed as a piecewise Ehrhart quasi-polynomial in the parameters. This work presentsmethods to find bounds on quasi-polynomials o...
متن کامل