Modeling micro-end-milling operations. Part III: influence of tool wear
نویسندگان
چکیده
The characteristics of the cutting forces were studied at different usage levels and the analytical model of the micro-end-milling operations was modified to represent the tool wear. A new expression was derived from the model to estimate the remaining tool life from experimental data. The parameters of the model are estimated by using genetic algorithms. The difference between the simulated and experimental cutting force profiles for new and worn tools was less than 8%. The remaining tool life was estimated with typically 10% error from the experimental data. Maximum error was 20%. The introduced analytical model and genetic algorithm-based parameter estimation approach is very convenient for on-line tool wear monitoring without extensive experimental study. 2000 Elsevier Science Ltd. All rights reserved.
منابع مشابه
Modeling micro - end - milling operations . Part II : tool run - out
The effect of run-out is clearly noticed in micro-end-milling operations, while the same run-out creates negligible change at the cutting force profile of conventional end-milling operations. In this paper, the cutting force characteristics of micro-end-milling operations with tool run-out are investigated. An analytical cutting force model is developed for micro-end-milling operations with too...
متن کاملModelling and experimental analysis of the effects of tool wear, minimum chip thickness and micro tool geometry on the surface roughness in micro-end-milling
Tool wear, minimum chip thickness and micro tool geometry are found to have a significant influence on the surface roughness through experimental analysis of the micro-end-milling process. To address these issues, a surface roughness model is developed and validated in this present work. Firstly, experimental analysis for the tool wear and surface roughness was performed based on the micro-end-...
متن کاملModeling micro-end-milling operations. Part I: analytical cutting force model
A new analytical cutting force model is proposed for micro-end-milling operations. The model calculates the chip thickness by considering the trajectory of the tool tip while the tool rotates and moves ahead continuously. The proposed approach allows the calculation of the cutting forces to be done accurately in typical micro-end-milling operations with very aggressively selected feed per tooth...
متن کاملDevelopment of Cutting Force Model by FEM Approach and Experimental Investigation of Tool Wear for CNC end Milling in Machining of Titanium alloy Ti-6Al-4V
This paper presents the development of a cutting force model for end milling process under various cutting conditions and the tool wear is measured by Scanning Electron Microscope (SEM).This novel approach combines the concept of experimental design and finite element modeling of the cutting process which allows for a fairly accurate prediction of cutting forces with a significantly lower compu...
متن کاملStudy on tool wear and surface roughness in end milling of particulate aluminum metal matrix composite: Application of response surface methodology
Metal matrix composites have been widely used in industries, especially aerospace industries, due to their excellent engineering properties. However, it is difficult to machine them because of the hardness and abrasive nature of reinforcement elements like silicon carbide particles (SiCp).In the present study, an attempt has been made to investigate the influence of spindle speed (N), feed rate...
متن کامل