Sequential Monte Carlo Methods for Stochastic Volatility Models with Jumps

نویسندگان

  • Davide Raggi
  • Silvano Bordignon
چکیده

In this paper we propose a sequential Monte Carlo algorithm to estimate a stochastic volatility model with leverage effect, non constant conditional mean and jumps. Our idea relies on the auxiliary particle filter algorithm together with the Markov Chain Monte Carlo (MCMC) methodology. Our method allows to sequentially evaluate the parameters and the latent processes involved in the dynamic of interest. An empirical application on simulated data and on the Standard & Poor’s 500 index is presented to study the performance of the algorithm implemented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Bayesian Analysis of Return Dynamics with Stochastic Volatility and Levy Jumps

We develop Bayesian Markov chain Monte Carlo methods for inferences of continuoustime models with stochastic volatility and infinite-activity Levy jumps using discretely sampled data. Simulation studies show that (i) our methods provide accurate joint identification of diffusion, stochastic volatility, and Levy jumps, and (ii) affine jumpdiffusion models fail to adequately approximate the behav...

متن کامل

Bayesian Analysis of Stochastic Volatility Models with Levy Jumps: Application to Risk Analysis

In this paper I analyze a broad class of continuous-time jump diffusion models of asset returns. In the models, stochastic volatility can arise either from a diffusion part, or a jump part, or both. The jump component includes either compound Poisson or Lévy α-stable jumps. To be able to estimate the models with latent Lévy α−stable jumps, I construct a new Markov chain Monte Carlo algorithm. I...

متن کامل

Volatility, Jumps and Predictability of Returns: a Sequential Analysis

In this paper we propose a sequential Monte Carlo algorithm to estimate a stochastic volatility model with leverage effects and non constant conditional mean and jumps. We are interested in estimating the time invariant parameters and the non-observable dynamics involved in the model. Our idea relies on the auxiliary particle filter algorithm mixed together with Markov Chain Monte Carlo (MCMC) ...

متن کامل

Leverage, heavy-tails and correlated jumps in stochastic volatility models

This paper proposes the efficient and fast Markov chain Monte Carlo estimation methods for the stochastic volatility model with leverage effects, heavy-tailed errors and jump components, and for the stochastic volatility model with correlated jumps. We illustrate our method using simulated data and analyze daily stock returns data on S&P500 index and TOPIX. Model comparisons are conducted based...

متن کامل

Chapter on Bayesian Inference for Stochastic Volatility Modeling

This chapter reviews the major contributions over the last two decades to the literature on the Bayesian analysis of stochastic volatility (SV) models (univariate and multivariate). Bayesian inference is performed by tailoring Markov chain Monte Carlo (MCMC) or sequential Monte Carlo (SMC) schemes that take into account the specific modeling characteristics. The popular univariate stochastic vo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006