Group Orthogonal Matching Pursuit for Logistic Regression

نویسندگان

  • Aurelie C. Lozano
  • Grzegorz Swirszcz
  • Naoki Abe
چکیده

We consider a matching pursuit approach for variable selection and estimation in logistic regression models. Specifically, we propose Logistic Group Orthogonal Matching Pursuit (LogitGOMP), which extends the Group-OMP procedure originally proposed for linear regression models, to select groups of variables in logistic regression models, given a predefined grouping structure within the explanatory variables. We theoretically characterize the performance of Logit-GOMP in terms of predictive accuracy, and also provide conditions under which LogitGOMP is able to identify the correct (groups of) variables. Our results are non-asymptotic in contrast to classical consistency results for logistic regression which only apply in the asymptotic limit where the dimensionality is fixed or is restricted to grow slowly with the sample size. We conduct empirical evaluation on simulated data sets and the real world problem of splice site detection in DNA sequences. The results indicate that Logit-GOMP compares favorably to Logistic Group Lasso both in terms of variable selection and prediction accuracy. We also provide a generic version of our algorithm that applies to the wider class of generalized linear models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group Orthogonal Matching Pursuit for Variable Selection and Prediction

We consider the problem of variable group selection for least squares regression, namely, that of selecting groups of variables for best regression performance, leveraging and adhering to a natural grouping structure within the explanatory variables. We show that this problem can be efficiently addressed by using a certain greedy style algorithm. More precisely, we propose the Group Orthogonal ...

متن کامل

Grouped Orthogonal Matching Pursuit for Variable Selection and Prediction

We consider the problem of variable group selection for least squares regression, namely, that of selecting groups of variables for best regression performance, leveraging and adhering to a natural grouping structure within the explanatory variables. We show that this problem can be efficiently addressed by using a certain greedy style algorithm. More precisely, we propose the Group Orthogonal ...

متن کامل

Block Variable Selection in Multivariate Regression and High-dimensional Causal Inference

We consider multivariate regression problems involving high-dimensional predictor and response spaces. To efficiently address such problems, we propose a variable selection method, Multivariate Group Orthogonal Matching Pursuit, which extends the standard Orthogonal Matching Pursuit technique. This extension accounts for arbitrary sparsity patterns induced by domain-specific groupings over both...

متن کامل

Modified Orthogonal Matching Pursuit Algorithm for Cognitive Radio Wideband Spectrum Sensing

Sampling rate is the bottleneck for spectrum sensing over multi-GHz bandwidth. Recent progress in compressed sensing (CS) initialized several sub-Nyquist rate approaches to overcome the problem. However, efforts to design CS reconstruction algorithms for wideband spectrum sensing are very limited. It is possible to further reduce the sampling rate requirement and improve reconstruction performa...

متن کامل

Cooperative Orthogonal Matching Pursuit strategies for sparse approximation by partitioning

Cooperative Orthogonal Matching Pursuit strategies are considered for approximating a signal partition, subjected to a global constraint on sparsity. The approach is designed to produce a high quality sparse approximation of the whole signal, using highly coherent redundant dictionaries. The cooperation takes place by ranking the partition units for their sequential stepwise approximation and i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011