Gauss mixture vector quantization

نویسنده

  • Robert M. Gray
چکیده

Gauss mixtures are a popular class of models in statistics and statistical signal processing because they can provide good £ts to smooth densities, because they have a rich theory, and because the can be well estimated by existing algorithms such as the EM algorithm. We here extend an information theortic extremal property for source coding from Gaussian sources to Gauss mixtures using high rate quantization theory and extend a method originally used for LPC speech vector quantization to provide a Lloyd clustering approach to the design of Gauss mixture models. The theory provides formulas relating minimum discrimination information (MDI) for model selection and the mean squared error resulting when the MDI criterion is used in an optimized robust classi£ed vector quantizer. It also provides motivation for the use of Gauss mixture models for robust compression systems for general random vectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gauss Mixture Quantization: Clustering Gauss Mixtures

Gauss mixtures are a popular class of models in statistics and statistical signal processing because Gauss mixtures can provide good fits to smooth densities, because they have a rich theory, because they can yield good results in applications such as classification and image segmentation, and because the can be well estimated by existing algorithms such as the EM algorithm. We here use high ra...

متن کامل

Robust image classification based on a non-causal hidden Markov Gauss mixture model

We propose a novel image classification method using a noncausal hidden Markov Gauss mixture model (HMGMM). We apply supervised learning assuming that the observation probability distribution given each class can be estimated using Gauss mixture vector quantization (GMVQ) designed using the generalized Lloyd algorithm with a minimum discrimination information (MDI) distortion. The maximum a pos...

متن کامل

Image retrieval using color histograms generated by Gauss mixture vector quantization

Image retrieval based on color histograms requires quantization of a color space. Uniform scalar quantization of each color channel is a popular method for the reduction of histogram dimensionality. With this method, however, no spatial information among pixels is considered in constructing the histograms. Vector quantization (VQ) provides a simple and effective means for exploiting spatial inf...

متن کامل

Histogram-based image retrieval using Gauss mixture vector quantization

Histogram-based image retrieval requires some form of quantization since the raw color images result in large dimensionality in the histogram representation. Simple uniform quantization disregards the spatial information among pixels in making histograms. Since traditional vector quantization (VQ) with squared-error distortion employs only the first moment, it neglects the relationship among ve...

متن کامل

Extension of two-stage vector quantization-lattice vector quantization

This paper is the extension of two-stage vector quantization–(spherical) lattice vector quantization (VQ–(S)LVQ) recently introduced by Pan and Fischer [1]. First, according to high resolution quantization theory, generalized vector quantization–lattice vector quantization (G-VQ–LVQ) is formulated in order to release the constraint of the spherical boundary for the second-stage lattice vector q...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001