Exchange diffusion of dopamine induced in planar lipid bilayer membranes by the ionophore X537A

نویسنده

  • RW Holz
چکیده

The ionophore X537A causes a large increase in the [(14)C]dopamine (a catecholamine) permeability of planar bilayer membranes. Dopamine transport increases linearly with the ionophore concentration. At relatively high concentrations in the presence of dopamine, the ionophore omdices a conductance which is nearly ideally selective for the dopamine cation. However, the total dopamine flux as determined in tracer experiments is not affected by an electric field and is over 10(5) times larger than predicted from the estimated dopamine conductance. Increasing the dopamine concentration on the side containing radioactive dopamine (the cis side) saturates the dopamine transport. This saturation is relieved by trans addition of nonradioactive dopamine, tyramine, H(+), or K(+). With unequal concentrations of dopamine cis and trans (49 and 12.5 mM), the unidirectional dopamine fluxes are equal. Increasing H(+) cis and trans decreases dopamine transport. It is concluded that at physiological pH, the X537A-induced transport of dopamine occurs via an electrically silent exchange diffusion of dopamine cation with another cation (e.g., dopamine(+), H(+), or K(+)). X537A induces a Ca(++)-independent release of catecholamines from sympathetic nerves by interfering with intracellular storage within storage vesicles (R.W. Holz. 1975. Biochim. Biophys. Acta. 375:138-152). It is suggested that X537A causes an exchange of intravesicular catecholamine with a cytoplasmic cation (perhaps K(+) or H(+)) across the storage vesicle membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of biophysical properties of single chloride channel in rat brain mitochondrial inner membrane by channel incorporation into bilayer lipid membrane

Introduction: Recent studies have shown the presence of Cl- channels in heart and liver mitochondrial membranes. In this work, we have characterized the functional profile of a Cl- channel from rat brain mitochondria. Methods: After removing and homogenizing the rat brain, the supernatant was separately centrifuged in MSEdigitonin, H2O and Na2CO3 and mitochondrial inner membrane vesicles wer...

متن کامل

Polyethylene Glycol Repairs Damaged Membrane; Biophysical Application of Artificial Planar Bilayer to Mimic Biological Membrane

Polyethylene glycol (PEG) is a hydrophilic polymer, known to be capable to fuse numerous single cells in vitro, to join the membranes of adjacent neurons and giant invertebrate axons, and to seal damaged neural membranes. The molecular mechanism of the action of PEG is still unknown. It is believed that PEG dehydrates membranes and enables their structural components to resolve and rearrange in...

متن کامل

Evidences for a new cation channel in the brain mitochondrial inner membrane

Introduction: Previous studies and our works have indicated several cation channels in the rat brain mitochondrial inner membrane. In this work, we report the single-channel characterization of a cation channel from the rat brain mitochondrial inner membrane incorporated into a planar lipid bilayer. Methods: After removing and homogenizing the adult rat brain, its supernatant was centrifuged...

متن کامل

Heterogeneity of tryptophanyl residues in the sarcoplasmic reticulum ATPase probed by fluorescence energy transfer between the protein and fluorescent ionophore X537A.

Sarcoplasmic reticulum vesicles and purified ATPase were studied by fluorescence spectroscopy. The preparations exhibited similar excitation and emission spectra, characteristic of tryptophan fluorescence. Addition of calcium to the preparations suspended in ethylene glycol bis(P-aminoethyl ether)N, N, N’, N’-tetraacetic acid (EGTA) solutions promoted a 3 to 4% increase in fluorescence intensit...

متن کامل

Voltage-dependent lipid flip-flop induced by alamethicin.

Alamethicin appears to allow voltage-dependent lipid exchange ("flip-flop") between leaflets of a planar bilayer. In membranes with one leaflet of phosphatidyl serine and one of phosphatidyl ethanolamine, the shape of the nonactin current-voltage curve accurately reports the difference in surface potential between the two sides of the membrane. The surface potential is itself a good measure of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 69  شماره 

صفحات  -

تاریخ انتشار 1977