Shellability in Reductive Monoids

نویسنده

  • MOHAN S. PUTCHA
چکیده

The purpose of this paper is to extend to monoids the work of Björner, Wachs and Proctor on the shellability of the Bruhat-Chevalley order on Weyl groups. Let M be a reductive monoid with unit group G, Borel subgroup B and Weyl group W . We study the partially ordered set of B×Borbits (with respect to Zariski closure inclusion) within a G × G-orbit of M . This is the same as studying a W ×W -orbit in the Renner monoid R. Such an orbit is the retract of a ‘universal orbit’, which is shown to be lexicograhically shellable in the sense of Björner and Wachs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algebraic Monoids and Group Embeddings

We study the geometry of algebraic monoids. We prove that the group of invertible elements of an irreducible algebraic monoid is an algebraic group, open in the monoid. Moreover, if this group is reductive, then the monoid is affine. We then give a combinatorial classification of reductive monoids by means of the theory of spherical varieties.

متن کامل

Representations of the Renner Monoid

We describe irreducible representations and character formulas of the Renner monoids for reductive monoids, which generalizes the Munn-Solomon representation theory of rook monoids to any Renner monoids. The type map and polytope associated with reductive monoids play a crucial role in our work. It turns out that the irreducible representations of certain parabolic subgroups of the Weyl groups ...

متن کامل

Fine Bruhat Intersections for Reductive Monoids

Taylor, Dewey Terese. Fine Bruhat Intersections for Reductive Monoids. (Under the direction of Mohan S. Putcha.) Fine Bruhat intersections for reductive groups have been studied by several authors in connection with Kazhdan-Lusztig theory, canonical bases and Lie Theory. The purpose of this thesis is to study the analogous intersections for reductive monoids. We determine the conditions under w...

متن کامل

Representation Theory of Reductive Normal Algebraic Monoids

New results in the representation theory of “semisimple” algebraic monoids are obtained, based on Renner’s monoid version of Chevalley’s big cell. (The semisimple algebraic monoids have been classified by Renner.) The rational representations of such a monoid are the same thing as “polynomial” representations of the associated reductive group of units in the monoid, and this representation cate...

متن کامل

The Orbit Structure of 2-reducible Algebraic Monoids

In this paper we study the orbit structure of semisimple algebraic monoids with exactly two nonzero minimal G×G-orbits. The case of one minimal orbit was solved earlier by the authors. The key notion for reductive monoids is the type map λ, which is the monoid notion of the Dynkin diagram. It is the ultimate combinatorial invariant of a reductive monoid. To calculate λ, we associate with each 2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001