An Ensemble Kalman Filter Using the Conjugate Gradient Sampler

نویسندگان

  • Johnathan M. Bardsley
  • Antti Solonen
  • Albert Parker
  • Heikki Haario
  • Marylesa Howard
چکیده

The ensemble Kalman filter (EnKF) is a technique for dynamic state estimation. EnKF approximates the standard extended Kalman filter (EKF) by creating an ensemble of model states whose mean and empirical covariance are then used within the EKF formulas. The technique has a number of advantages for large-scale, nonlinear problems. First, large-scale covariance matrices required within EKF are replaced by low-rank and low-storage approximations, making implementation of EnKF more efficient. Moreover, for a nonlinear state space model, implementation of EKF requires the associated tangent linear and adjoint codes, while implementation of EnKF does not. However, for EnKF to be effective, the choice of the ensemble members is extremely important. In this paper, we show how to use the conjugate gradient (CG) method, and the recently introduced CG sampler, to create the ensemble members at each filtering step. This requires the use of a variational formulation of EKF. The effectiveness of the method is demonstrated on both a large-scale linear, and a small-scale, nonlinear, chaotic problem. In our examples, the CG-EnKF performs better than the standard EnKF, especially when the ensemble size is small.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-differentiable Minimization in the Context of the Maximum Likelihood Ensemble Filter (mlef)

The Maximum Likelihood Ensemble Filter (MLEF) is a control theory based ensemble data assimilation algorithm. The MLEF is presented and its basic equations discussed. Its relation to Kalman filtering is examined, indicating that the MLEF can be viewed as a nonlinear extension of the Kalman filter in the sense that it reduces to the standard Kalman filter for linear operators and Gaussian Probab...

متن کامل

Realization of a Vold-kalman Tracking Filter — a Least Squares Problem

The aim of this work was the implementation of the so-called VoldKalman filter. This filter was introduced by Vold and Leuridan in 1993 [1], it is a heterodyne filter for tracking the sinusoidal components of a noisy signal. The formulation of the Vold-Kalman filter leads to a least squares problem. The great advantage of this time-varying filter is that all sinusoids of a signal can be extract...

متن کامل

Distance Dependent Localization Approach in Oil Reservoir History Matching: A Comparative Study

To perform any economic management of a petroleum reservoir in real time, a predictable and/or updateable model of reservoir along with uncertainty estimation ability is required. One relatively recent method is a sequential Monte Carlo implementation of the Kalman filter: the Ensemble Kalman Filter (EnKF). The EnKF not only estimate uncertain parameters but also provide a recursive estimat...

متن کامل

A hybrid (variational/Kalman) ensemble smoother for the estimation of nonlinear high-dimensional discretizations of PDE systems

Two classes of state estimation schemes, variational (4DVar) and ensemble Kalman (EnKF), have been developed and used extensively by the weather forecasting community as tractable alternatives to the standard matrix-based Kalman update equations for the estimation of high-dimensional nonlinear systems with possibly nongaussian PDFs. Variational schemes iteratively minimize a finite-horizon cost...

متن کامل

Advanced Data Assimilation for Strongly Nonlinear Dynamics

Advanced data assimilation methods become extremely complicated and challenging when used with strongly nonlinear models. Several previous works have reported various problems when applying existing popular data assimilation techniques with strongly nonlinear dynamics. Common for these techniques is that they can all be considered as extensions to methods that have proved to work well with line...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011