Fast Word Detection in a Speech Using New High Speed Time Delay Neural Networks
نویسندگان
چکیده
This paper presents a new approach to speed up the operation of time delay neural networks for fast detecting a word in a speech. The entire data are collected together in a long vector and then tested as a one input pattern. The proposed fast time delay neural networks (FTDNNs) use cross correlation in the frequency domain between the tested data and the input weights of neural networks. It is proved mathematically and practically that the number of computation steps required for the presented time delay neural networks is less than that needed by conventional time delay neural networks (CTDNNs). Simulation results using MATLAB confirm the theoretical computations. Keywords—Fast Time Delay Neural Networks, Cross Correlation, Frequency Domain, Word Detection in a speech.
منابع مشابه
Fast Time Delay Neural Networks for Word Detection in Video Conference
This paper presents a new approach to speed up the operation of time delay neural networks for fast detecting a word in a video conference. The entire data are collected together in a long vector and then tested as a one input pattern. The proposed fast time delay neural networks (FTDNNs) use cross correlation in the frequency domain between the tested data and the input weights of neural netwo...
متن کاملFast Code Detection Using High Speed Time Delay Neural Networks
This paper presents a new approach to speed up the operation of time delay neural networks for fast code detection. The entire data are collected together in a long vector and then tested as a one input pattern. The proposed fast time delay neural networks (FTDNNs) use cross correlation in the frequency domain between the tested data and the input weights of neural networks. It is proved mathem...
متن کاملFast Packet Detection by using High Speed Time Delay Neural Networks
Fast packet detection is very important to overcome intrusion attack. In this paper, a new approach for fast packet detection in serial data sequence is presented. Such algorithm uses fast time delay neural networks (FTDNNs). The operation of these networks relies on performing cross correlation in the frequency domain between the input data and the input weights of neural networks. It is prove...
متن کاملNeural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features
This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...
متن کاملFast Intrusion Detection by using High Speed Focused Time Delay Neural Networks
E-government is an important issue which integrates existing local area networks into a global network that provide many services to the nation citizens. This network requires a strong security infrastructure to guarantee the confidentiality of national data and the availability of government services. In this paper, a framework for network intrusion detection systems is presented. Such framewo...
متن کامل