Optical pumping and vibrational cooling of molecules.
نویسندگان
چکیده
The methods producing cold molecules from cold atoms tend to leave molecular ensembles with substantial residual internal energy. For instance, cesium molecules initially formed via photoassociation of cold cesium atoms are in several vibrational levels nu of the electronic ground state. We applied a broadband femtosecond laser that redistributes the vibrational population in the ground state via a few electronic excitation/spontaneous emission cycles. The laser pulses are shaped to remove the excitation frequency band of the nu = 0 level, preventing re-excitation from that state. We observed a fast and efficient accumulation ( approximately 70% of the initially detected molecules) in the lowest vibrational level, nu = 0, of the singlet electronic state. The validity of this incoherent depopulation pumping method is very general and opens exciting prospects for laser cooling and manipulation of molecules.
منابع مشابه
Molecular vibrational cooling by Optical Pumping with shaped femtosecond pulses
Some of us have recently reported in Science [1] vibrational cooling of translationally cold Cs2 molecules into the lowest vibrational level v = 0 of the singlet XΣg ground electronic state. Starting from a sample of cold molecules produced in a collection of vibrational levels of the ground state, our method was based on repeated optical pumping by laser light with a spectrum broad enough to e...
متن کامل8 N ov 2 01 2 Rovibrational cooling of molecules by optical pumping
We demonstrate rotational and vibrational cooling of cesium dimers by optical pumping techniques. We use two laser sources exciting all the populated rovibrational states, except a target state that thus behaves like a dark state where molecules pile up thanks to absorption-spontaneous emission cycles. We are able to accumulate photoassociated cold Cs2 molecules in their absolute ground state (...
متن کاملBroadband lasers to detect and cool the vibration of cold molecules.
By using broadband lasers, we demonstrate the possibilities for control of cold molecules formed via photoassociation. Firstly, we present a detection REMPI scheme (M. Viteau et al., Phys. Rev. A, 2009, 79, 021402) to systematically investigate the mechanisms of formation of ultracold Cs2 molecules in deeply bound levels of their electronic ground state X1sigma(g)+. This broadband detection sch...
متن کاملA Magneto-Optical Trap for Polar Molecules
We propose a method for laser cooling and trapping a substantial class of polar molecules, and in particular titanium (II) oxide (TiO). This method uses pulsed electric fields to nonadiabatically remix the ground-state magnetic sublevels of the molecule, allowing us to build a magneto-optical trap (MOT) based on a quasi-cycling J′ = J′′−1 transition. Monte-Carlo simulations of this electrostati...
متن کاملOptical pulse-shaping for internal cooling of molecules.
We consider the use of pulse-shaped broadband femtosecond lasers to optically cool rotational and vibrational degrees of freedom of molecules. Since this approach relies on cooling rotational and vibrational quanta by exciting an electronic transition, it is most easily applicable to molecules with similar ground and excited potential energy surfaces, such that the vibrational state is usually ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 321 5886 شماره
صفحات -
تاریخ انتشار 2008