Bilateral Shorted Operators and Parallel Sums

نویسندگان

  • Jorge Antezana
  • Gustavo Corach
  • Demetrio Stojanoff
چکیده

In this paper we study shorted operators relative to two different subspaces, for bounded operators on infinite dimensional Hilbert spaces. We define two notions of “complementability” in the sense of Ando for operators, and study the properties of the shorted operators when they can be defined. We use these facts in order to define and study the notions of parallel sum and subtraction, in this Hilbertian context.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sums and Products of Commuting AC-Operators

Abstract: In this paper, we exhibit new conditions for the sum of two commuting AC-operators to be again an AC-operator. In particular, this is satisfied on Hilbert space when one of them is a scalar-type spectral operator.  

متن کامل

Some Results on Operator Means and Shorted Operators

We prove some results on operator equalities and inequalities involving positive maps, operator means and shorted operators. Inequalities for shorted operators involving convex operator functions and tensor product have also been proved.

متن کامل

Conditioning Gaussian measure on Hilbert space

For a Gaussian measure on a separable Hilbert space with covariance operator C, we show that the family of conditional measures associated with conditioning on a closed subspace S are Gaussian with covariance operator the short S(C) of the operator C to S. We provide two proofs. The first uses the theory of Gaussian Hilbert spaces and a characterization of the shorted operator by Andersen and T...

متن کامل

Shorted Operators Relative to a Partial Order in a Regular Ring

In this paper, the explicit form of maximal elements, known as shorted operators, in a subring of a von Neumann regular ring has been obtained. As an application of the main theorem, the unique shorted operator (of electrical circuits) which was introduced by Anderson-Trapp has been derived.

متن کامل

Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators

We propose a primal-dual splitting algorithm for solving monotone inclusions involving a mixture of sums, linear compositions, and parallel sums of set-valued and Lipschitzian operators. An important feature of the algorithm is that the Lipschitzian operators present in the formulation can be processed individually via explicit steps, while the set-valued operators are processed individually vi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005