Content Based Image Retrieval System using Feature Classification with Modified KNN Algorithm

نویسندگان

  • T. Dharani
  • I. Laurence Aroquiaraj
چکیده

Feature means countenance, remote sensing scene objects with similar characteristics, associated to interesting scene elements in the image formation process. They are classified into three types in image processing, that is low, middle and high. Low level features are color, texture and middle level feature is shape and high level feature is semantic gap of objects. An image retrieval system is a computer system for browsing, searching and retrieving images from a large image database. Content Based Image Retrieval (CBIR) is a technique which uses visual features of image such as color, shape, texture, etc...to search user required image from large image database according to user’s requests in the form of a query. MKNN is an enhancing method of KNN. The proposed KNN classification is called MKNN. MKNN contains two parts for processing, they are validity of the train samples and applying weighted KNN. The validity of each point is computed according to its neighbors. In our proposal, Modified K-Nearest Neighbor (MKNN) can be considered a kind of weighted KNN so that the query label is approximated by weighting the neighbors of the query. The procedure computes the fraction of the same labeled neighbors to the total number of neighbors. MKNN classification is based on validated neighbors who have more information in comparison with simple class labels. This paper also concentrates identifying the unlabeled images with help of MKNN algorithm. Experiments show the validity takes into accounts the value of stability and robustness of the any train samples regarding with its neighbors and excellent improvement in the performance of KNN method. This system allows provide label to unlabeled image as user input. Keywords— CBIR, Image Classification, KNN, MKNN,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modified Grasshopper Optimization Algorithm Combined with CNN for Content Based Image Retrieval

Nowadays, with huge progress in digital imaging, new image processing methods are needed to manage digital images stored on disks. Image retrieval has been one of the most challengeable fields in digital image processing which means searching in a big database in order to represent similar images to the query image. Although many efficient researches have been performed for this topic so far, t...

متن کامل

Image Retrieval Using Dynamic Weighting of Compressed High Level Features Framework with LER Matrix

In this article, a fabulous method for database retrieval is proposed.  The multi-resolution modified wavelet transform for each of image is computed and the standard deviation and average are utilized as the textural features. Then, the proposed modified bit-based color histogram and edge detectors were utilized to define the high level features. A feedback-based dynamic weighting of shap...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

Quality Assessment and Simulative Performance Measures of Content Based Image Retrieval System

Content based image retrieval (CBIR) from large resources has become a dominant research field and found wide interest nowadays in many applications. In this thesis work, we design and implement a content based image retrieval system that uses color and texture as visual features to describe the content of an image region. We use k-nearest neighbor (knn) and HSV color model to extract feature o...

متن کامل

Enhanced Multiquery System Using Knn for Content Based Image Retrieval

Content Based Image Retrieval (CBIR) techniques are becoming an essential requirement in the multimedia systems with the widespread use of internet, declining cost of storage devices and the exponential growth of un-annotated digital image information available in recent years. Therefore multi query systems have been used rather than a single query in order to bridge the semantic gaps and in or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1307.4717  شماره 

صفحات  -

تاریخ انتشار 2013