Improved Adaptive Droop Control Design for Optimal Power Sharing in VSC-MTDC Integrating Wind Farms
نویسندگان
چکیده
With the advance of insulated gate bipolar transistor (IGBT) converters, Multi-Terminal DC (MTDC) based on the voltage-source converter (VSC) has developed rapidly in renewable and electric power systems. To reduce the copper loss of large capacity and long distance DC transmission line, an improved droop control design based on optimal power sharing in VSC-MTDC integrating offshore wind farm is proposed. The proposed approach provided a calculation method for power-voltage droop coefficients under two different scenarios either considering local load or not. The available headroom of each converter station was considered as a converter outage, to participate in the power adjustment according to their ability. A four-terminal MTDC model system including two large scale wind farms was set up in PSCAD/EMTDC. Then, the proposed control strategy was verified through simulation under the various conditions, including wind speed variation, rectifier outage and inverter outage, and a three-phase short-circuit of the converter.
منابع مشابه
DC Voltage Control and Power-Sharing of Multi-Terminal DC Grids Based on Optimal DC Power Flow and Flexible Voltage Droop Strategy
This paper develops an effective control framework for DC voltage control and power-sharing of multi-terminal DC (MTDC) grids based on an optimal power flow (OPF) procedure and the voltage-droop control. In the proposed approach, an OPF algorithm is executed at the secondary level to find optimal reference of DC voltages and active powers of all voltage-regulating converters. Then, the voltage ...
متن کاملFast Frequency Response from Offshore Multi-terminal VSC-HVDC Schemes
This paper analyses the frequency support characteristics of multi-terminal VSC-HVDC (MTDC) schemes using the energy transferred from wind turbine rotating mass and other AC systems. An alternative coordinated control (ACC) scheme, which gives priority to a frequency versus active power droop fitted to onshore VSCs is proposed to: (i) transfer wind turbine recovery power to undisturbed AC grids...
متن کاملThree-terminal Hybrid HVDC Transmissions Control Strategies for Bundled Wind-thermal Power Plants
Abstract: This paper evaluates application feasibility of a Hybrid Multi-terminal HVDC system and wind-thermal-bundled plants simulated in DIgSLIENT PowerFactory environment. The proposed hybrid MTDC system consists of two line-communicated converters (LCC), which are connected to both wind farms and thermal power plants, and one voltage source converter (VSC) at the grid side. Control strategi...
متن کاملControl , Dynamics and Operation of Multi - terminal VSC - HVDC Transmission Systems
In recent years, there has been an increased development and deployment of renewable energy resources to meet the ever increasing electric power demand and to limit the use of fossil fuels. This has spurred offshore wind farm development, particularly in the North Sea, due to the vast offshore wind energy potential. Large scale wind farms in the North Sea pose grid integration challenges such a...
متن کاملMinimizing DC System Loss in Multi-Terminal HVDC Systems through Adaptive Droop control
In this paper, droop control of inverters in a multi-terminal HVDC (MTDC) system is designed to achieve minimum DC system loss while preventing converter overvoltage. Circuit analysis along with optimization analysis is first conducted to seek the optimal droop control gains. Contingent operating conditions are then considered. The droop control gains will adapt to achieve minimum loss as well ...
متن کامل