Fast-response infrared phase modulator based on polymer network liquid crystal

نویسندگان

  • Fenglin Peng
  • Haiwei Chen
  • Suvagata Tripathi
  • Robert J. Twieg
  • Shin-Tson Wu
چکیده

We report a high birefringence terphenyl liquid crystal mixture, designated as M3, for infrared phase modulation with special emphasis on mid-wave infrared (MWIR). In addition to high birefringence, M3 exhibits excellent UV stability, modest dielectric anisotropy, and a very broad nematic range. The high birefringence enables a thin cell gap to be used for achieving a 2π phase change while maintaining a high transmittance (T>98%) in the MWIR region. To achieve fast response time, we employed a polymer network liquid crystal using M3 with 2π phase change at λ = 4μm and 3.6-ms response time. This response time is about 100X faster than that of a nematic LC phase modulator. ©2015 Optical Society of America OCIS codes: (120.5060) Phase modulation; (160.3710) Liquid crystals; (230.3720) Liquidcrystal devices. References and links 1. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices (John Wiley & Sons, 2006). 2. E. Lueder, Liquid Crystal Displays: Addressing Schemes and Electro-optical Effects (John Wiley & Sons, 2010). 3. S.-T. Wu, “Infrared properties of nematic liquid crystals: an overview,” Opt. Eng. 26(2), 120–128 (1987). 4. K. C. Lim, J. D. Margerum, and A. M. Lackner, “Liquid crystal millimeter wave electronic phase shifter,” Appl. Phys. Lett. 62(10), 1065–1067 (1993). 5. X. Lin, J. Wu, W. Hu, Z. Zheng, Z. Wu, G. Zhu, F. Xu, B. Jin, and Y. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1(3), 032133 (2011). 6. R. Dąbrowski, P. Kula, and J. Herman, “High birefringence liquid crystals,” Crystals 3(3), 443–482 (2013). 7. F. Peng, Y. Chen, J. Yuan, H. Chen, S.-T. Wu, and Y. Haseba, “Low temperature and high frequency effects on polymer-stabilized blue phase liquid crystals with large dielectric anisotropy,” J. Mater. Chem. C 2(18), 3597– 3601 (2014). 8. U. Efron, Spatial Light Modulator Technology: Materials, Devices, and Applications (Marcel Dekker, New York, 1994). 9. H. Ren and S.-T. Wu, Introduction to Adaptive Lenses (Wiley, 2012). 10. M. Schadt and W. Helfrich, “Voltage-dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971). 11. R. A. Soref, “Transverse field effects in nematic liquid crystals,” Appl. Phys. Lett. 22(4), 165–166 (1973). 12. M. F. Schiekel and K. Fahrenschon, “Deformation of nematic liquid crystals with vertical orientation in electrical fields,” Appl. Phys. Lett. 19(10), 391–393 (1971). 13. S.-T. Wu, U. Efron, and T.-Y. Hsu, “Near-infrared-to-visible image conversion using a Si liquid-crystal light valve,” Opt. Lett. 13(1), 13–15 (1988). 14. S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33(2), 1270–1274 (1986). 15. J. Sun, H. Xianyu, Y. Chen, and S.-T. Wu, “Submillisecond-response polymer network liquid crystal phase modulators at 1.06-μm wavelength,” Appl. Phys. Lett. 99(2), 021106 (2011). 16. Y.-H. Fan, Y.-H. Lin, H. Ren, S. Gauza, and S.-T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84(8), 1233–1235 (2004). 17. J. Sun and S. T. Wu, “Recent advances in polymer network liquid crystal spatial light modulators,” J. Polym. Sci., Part B: Polym. Phys. 52(3), 183–192 (2014). 18. J. Sun, S.-T. Wu, and Y. Haseba, “A low voltage submillisecond-response polymer network liquid crystal spatial light modulator,” Appl. Phys. Lett. 104(2), 023305 (2014). 19. M. Schadt, “Liquid crystal materials and liquid crystal displays,” Annu. Rev. Mater. Sci. 27(1), 305–379 (1997). 20. G. W. Gray and A. Mosley, “The synthesis of deuteriated 4-n-alkyl-4′-cyanobiphenyls,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 48(3–4), 233–242 (1978). #226796 $15.00 USD Received 13 Nov 2014; revised 22 Dec 2014; accepted 22 Dec 2014; published 8 Jan 2015 (C) 2015 OSA 1 Feb 2015 | Vol. 5, No. 2 | DOI:10.1364/OME.5.000265 | OPTICAL MATERIALS EXPRESS 265 21. S.-T. Wu, Q.-H. Wang, M. D. Kempe, and J. A. Kornfield, “Perdeuterated cyanobiphenyl liquid crystals for infrared applications,” J. Appl. Phys. 92(12), 7146–7148 (2002). 22. Y. Chen, H. Xianyu, J. Sun, P. Kula, R. Dabrowski, S. Tripathi, R. J. Twieg, and S.-T. Wu, “Low absorption liquid crystals for mid-wave infrared applications,” Opt. Express 19(11), 10843–10848 (2011). 23. F. Peng, Y. Chen, S.-T. Wu, S. Tripathi, and R. J. Twieg, “Low loss liquid crystals for infrared applications,” Liq. Cryst. 41(11), 1545–1552 (2014). 24. B. Mistry, A Handbook of Spectroscopic Data Chemistry: UV, IR, PMR, CNMR and Mass Spectroscopy (Oxford Book Company, Jaipur, India, 2009). 25. S.-T. Wu, D. Coates, and E. Bartmann, “Physical properties of chlorinated liquid crystals,” Liq. Cryst. 10(5), 635–646 (1991). 26. M. Schadt, “Field-effect liquid-crystal displays and liquid-crystal materials: key technologies of the 1990s,” Displays 13(1), 11–34 (1992). 27. M. Hird, “Fluorinated liquid crystals properties and applications,” Chem. Soc. Rev. 36(12), 2070–2095 (2007). 28. Y. Chen, Z. Luo, F. Peng, and S.-T. Wu, “Fringe-field switching with a negative dielectric anisotropy liquid crystal,” J. Disp. Technol. 9(2), 74–77 (2013). 29. I. Haller, “Thermodynamic and static properties of liquid crystals,” Prog. Solid State Chem. 10, 103–118 (1975). 30. I. H. Malitson, “Refractive properties of barium fluoride,” JOSA 54(5), 628–630 (1964). 31. J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97(7), 073501 (2005). 32. S.-T. Wu, “Infrared markers for determining the order parameters of uniaxial liquid crystals,” Appl. Opt. 26(16), 3434–3440 (1987). 33. H. Kneppe, F. Schneider, and N. K. Sharma, “Rotational viscosity γ1 of nematic liquid crystals,” J. Chem. Phys. 77(6), 3203–3208 (1982). 34. I.-C. Khoo and S.-T. Wu, Optics and Nonlinear Optics of Liquid Crystals (World Scientific, 1993). 35. M. Zhang, S. Fang, A. A. Zakhidov, S. B. Lee, A. E. Aliev, C. D. Williams, K. R. Atkinson, and R. H. Baughman, “Strong, transparent, multifunctional, carbon nanotube sheets,” Science 309(5738), 1215–1219 (2005). 36. D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Low-Voltage and Fast-Response Infrared Spatial Light Modulator

We report a low-voltage and fast-response polymer network liquid crystal (PNLC) infrared phase modulator. By optimizing the UV curing temperature and LC host, we achieved V2= 22.8V at =1.55m and response time about 1ms. Such a PNLC-based spatial light modulator is useful for adaptive optics, adaptive lens, and laser beam steering. Author

متن کامل

Low voltage polymer network liquid crystal for infrared spatial light modulators.

We report a low-voltage and fast-response polymer network liquid crystal (PNLC) infrared phase modulator. To optimize device performance, we propose a physical model to understand the curing temperature effect on average domain size. Good agreement between model and experiment is obtained. By optimizing the UV curing temperature and employing a large dielectric anisotropy LC host, we have lower...

متن کامل

Submillisecond-response polymer network liquid crystal phase modulators at 1.06-lm wavelength

A fast-response and scattering-free polymer network liquid crystal (PNLC) light modulator is demonstrated at k1⁄4 1.06 lm wavelength. A decay time of 117 ls for 2p phase modulation is obtained at 70 C, which is 650 faster than that of the host nematic LCs. The major tradeoff is the increased operating voltage. Potential applications include spatial light modulators and adaptive optics. VC 2011 ...

متن کامل

Recent advances in IR liquid crystal spatial light modulators

Liquid crystal (LC) is an amazing class of electro-optic media; its applications span from visible to infrared, millimeter wave, and terahertz regions. In the visible and short-wavelength infrared (SWIR) regions, most LCs are highly transparent. However, to extend the electro-optic application of LCs into MWIR and LWIR, several key technical challenges have to be overcome: (1) low absorption lo...

متن کامل

Fast-Response Infrared Ferroelectric Liquid Crystal Phase Modulators

A high speed phase modulator based on ferroelectric liquid crystal (FLC) is demonstrated. For uniform alignment and pure phase modulation, we propose a new FLC device using a short helical pitch material in a homeotropic alignment. This device is driven by periodic in-plane electrode stripes implemented on the surface of both cell substrates. As a result, we have obtained a large phase modulati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015