Lipschitz Metric for the Hunter–saxton Equation
نویسنده
چکیده
We study stability of solutions of the Cauchy problem for the Hunter–Saxton equation ut + uux = 14 ( R x −∞ u 2 x dx− R∞ x ux dx) with initial data u0. In particular, we derive a new Lipschitz metric dD with the property that for two solutions u and v of the equation we have dD(u(t), v(t)) ≤ edD(u0, v0).
منابع مشابه
Analytical solution of the Hunter-Saxton equation using the reduced dierential transform method
In this paper, the reduced dierential transform method is investigated fora nonlinear partial dierential equation modeling nematic liquid crystals, itis called the Hunter-Saxton equation. The main advantage of this methodis that it can be applied directly to nonlinear dierential equations withoutrequiring linearization, discretization, or perturbation. It is a semi analytical-numerical method t...
متن کاملNumerical solution of fuzzy Hunter-Saxton equation by using Adomian decomposition and Homotopy analysis methods
In this paper, a fuzzy Hunter-Saxton equation is solved by using the Adomian'sdecomposition method (ADM) and homotopy analysis method (HAM). Theapproximation solution of this equation is calculated in the form of series whichits components are computed by applying a recursive relation. The existenceand uniqueness of the solution and the convergence of the proposed methodsare proved. A numerical...
متن کاملThe Homogeneous Sobolev Metric of Order One on Diffeomorphism Groups on the Real Line
In this article we study Sobolev metrics of order one on diffeomorphism groups on the real line. We prove that the space Diff1(R) equipped with the homogenous Sobolev metric of order one is a flat space in the sense of Riemannian geometry, as it is isometric to an open subset of a mapping space equipped with the flat L2-metric. Here Diff1(R) denotes the extension of the group of all either comp...
متن کاملA bi-Hamiltonian Supersymmetric Geodesic Equation
A supersymmetric extension of the Hunter-Saxton equation is constructed. We present its bi-Hamiltonian structure and show that it arises geometrically as a geodesic equation on the space of superdiffeomorphisms of the circle that leave a point fixed endowed with a right-invariant metric. AMS Subject Classification (2000): 37K10, 17A70.
متن کاملAlgebraic Discretization of the Camassa-Holm and Hunter-Saxton Equations
The Camassa-Holm (CH) and Hunter-Saxton (HS) equations have an interpretation as geodesic flow equations on the group of diffeomorphisms, preserving the H and Ḣ right-invariant metrics correspondingly. There is an analogy to the Euler equations in hydrodynamics, which describe geodesic flow for a right-invariant metric on the infinitedimensional group of diffeomorphisms preserving the volume el...
متن کامل