Generalised Coherent Point Drift for Group-Wise Registration of Multi-dimensional Point Sets

نویسندگان

  • Nishant Ravikumar
  • Ali Gooya
  • Alejandro F. Frangi
  • Zeike A. Taylor
چکیده

In this paper we propose a probabilistic approach to groupwise registration of unstructured high-dimensional point sets. We focus on registration of generalised point sets which encapsulate both the positions of points on surface boundaries and corresponding normal vectors describing local surface geometry. Richer descriptions of shape can be especially valuable in applications involving complex and intricate variations in geometry, where spatial position alone is an unreliable descriptor for shape registration. A hybrid mixture model combining Student’s t and Von-Mises-Fisher distributions is proposed to model position and orientation components of the point sets, respectively. A group-wise rigid and non-rigid registration framework is then formulated on this basis. Two clinical data sets, comprising 27 brain ventricle and 15 heart shapes, were used to assess registration accuracy. Significant improvement in accuracy and anatomical validity of the estimated correspondences was achieved using the proposed approach, relative to state-of-the-art point set registration approaches, which consider spatial positions alone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A robust feature-based registration method of multimodal image using phase congruency and coherent point drift

This paper presents a new feature matching algorithm for nonrigid multimodal image registration. The proposed algorithm first constructs phase congruency representations (PCR) of images to be registered. Then scale invariant feature transform (SIFT) method is applied to capture significant feature points from PCR. Subsequently, the putative matching is obtained by the nearest neighbour matching...

متن کامل

Stable registration of pathological 3D-OCT scans using retinal vessels

We propose a multiple scanner vendor registration method for pathological retinal 3D spectral domain optical coherence tomography volumes based on Myronenko’s Coherent Point Drift and our automated vessel shadow segmentation. Coherent point drift is applied to the segmented retinal vessel point sets used as landmarks to generate the registration parameters required. In contrast to other registr...

متن کامل

Non-rigid point set registration: Coherent Point Drift

We introduce Coherent Point Drift (CPD), a novel probabilistic method for nonrigid registration of point sets. The registration is treated as a Maximum Likelihood (ML) estimation problem with motion coherence constraint over the velocity field such that one point set moves coherently to align with the second set. We formulate the motion coherence constraint and derive a solution of regularized ...

متن کامل

3D Classification of Urban Features Based on Integration of Structural and Spectral Information from UAV Imagery

Three-dimensional classification of urban features is one of the important tools for urban management and the basis of many analyzes in photogrammetry and remote sensing. Therefore, it is applied in many applications such as planning, urban management and disaster management. In this study, dense point clouds extracted from dense image matching is applied for classification in urban areas. Appl...

متن کامل

Towards Deformable Shape Modeling of the Left Atrium Using Non-Rigid Coherent Point Drift Registration

Modeling the deformable shape of the left atrium is of strong interest for many applications in cardiac diagnosis and intervention. In this paper, we propose a method for left atrium shape modeling using non-rigid point cloud registration. In particular, we build upon the concept of Coherent Point Drift (CPD) registration that considers the alignment as a probability density estimation problem....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017