High performance photoelectrochemical hydrogen generation and solar cells with a double type II heterojunction.
نویسندگان
چکیده
We report on the fabrication of CdSe quantum dot (QD) sensitized electrodes by direct adsorption of colloidal QDs on mesoporous TiO2 followed by 3-mercaptopropionic acid (MPA) ligand exchange. High efficiency photoelectrochemical hydrogen generation is demonstrated by means of these electrodes. The deposition of ZnS on TiO2/CdSe further improves the external quantum efficiency from 63% to 85% at 440 nm under -0.5 V vs. SCE. Using the same photoelectrodes, solar cells with the internal quantum efficiency approaching 100% are fabricated. The ZnS deposition increases the photocurrent and chemical stability of the electrodes. Investigation of the carrier dynamics of the solar cells shows that ZnS enhances the exciton separation rate in CdSe nanocrystals, which we ascribe to the formation of a type II heterojunction between ZnS and CdSe QDs. This finding is confirmed by the dynamics of the CdSe photoluminescence, which in the presence of ZnS becomes noticeably faster.
منابع مشابه
Thermodynamic diagnosis of a novel solar-biomass based multi-generation system including potable water and hydrogen production
In this study, a new proposed multi-generation system as a promising integrated energy conversion system is studied, and its performance is investigated thermodynamically. The system equipped with parabolic trough collectors and biomass combustor to generate electricity, heating and cooling loads, hydrogen and potable water. A double effect absorption chiller to provide cooling demand, a proton...
متن کاملRecent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems
Photoelectrochemical (PEC) water splitting using solar energy has attracted great attention for generation of renewable hydrogen with less carbon footprint, while there are enormous challenges that still remain for improving solar energy water splitting efficiency, due to limited light harvesting, energy loss associated to fast recombination of photogenerated charge carriers, as well as electro...
متن کاملRemnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells?a)
Articles you may be interested in Titanium dioxide/silicon hole-blocking selective contact to enable double-heterojunction crystalline silicon-based solar cell Appl. High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free per...
متن کاملEarth‐Abundant Tin Sulfide‐Based Photocathodes for Solar Hydrogen Production
Tin-based chalcogenide semiconductors, though attractive materials for photovoltaics, have to date exhibited poor performance and stability for photoelectrochemical applications. Here, a novel strategy is reported to improve performance and stability of tin monosulfide (SnS) nanoplatelet thin films for H2 production in acidic media without any use of sacrificial reagent. P-type SnS nanoplatelet...
متن کاملHigh-Performance a-Si/c-Si Heterojunction Photoelectrodes for Photoelectrochemical Oxygen and Hydrogen Evolution.
Amorphous Si (a-Si)/crystalline Si (c-Si) heterojunction (SiHJ) can serve as highly efficient and robust photoelectrodes for solar fuel generation. Low carrier recombination in the photoelectrodes leads to high photocurrents and photovoltages. The SiHJ was designed and fabricated into both photoanode and photocathode with high oxygen and hydrogen evolution efficiency, respectively, by simply co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 16 شماره
صفحات -
تاریخ انتشار 2014