Toward a Gravitation Theory in Berwald–Finsler Space

نویسندگان

  • Xin Li
  • Zhe Chang
چکیده

Finsler geometry is a natural and fundamental generalization of Riemann geometry. The Finsler structure depends on both coordinates and velocities. It is defined as a function on tangent bundle of a manifold. We use the Bianchi identities satisfied by Chern curvature to set up a gravitation theory in Berwald-Finsler space. The geometric part of the gravitational field equation is nonsymmetric in general. This indicates that the local Lorentz invariance is violated. Nontrivial solutions of the gravitational field equation are presented. PACS numbers: 02.40.-k, 04.20.-q [email protected] [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Properties of Generalized Berwald Connections

Recently the present authors introduced a general class of Finsler connections which leads to a smart representation of connection theory in Finsler geometry and yields to a classification of Finsler connections into the three classes. Here the properties of one of these classes namely the Berwald-type connections which contains Berwald and Chern(Rund) connections as a special case is studied. ...

متن کامل

Modified Friedmann model in Randers-Finsler space of approximate Berwald type as a possible alternative to dark energy hypothesis

Gravitational field equations in Randers-Finsler space of approximate Berwald type are investigated. A modified Friedmann model is proposed. It is showed that the accelerated expanding universe is guaranteed by a constrained RandersFinsler structure without invoking dark energy. The geodesic in Randers-Finsler space is studied. The additional term in the geodesic equation acts as repulsive forc...

متن کامل

Concurrent vector fields on Finsler spaces

In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fi...

متن کامل

Berwald metrics constructed by Chevalley’s polynomials

Berwald metrics are particular Finsler metrics which still have linear Berwald connections. Their complete classification is established in an earlier work, [Sz1], of this author. The main tools in these classification are the Simons-Berger holonomy theorem and the Weyl-group theory. It turnes out that any Berwald metric is a perturbed-Cartesian product of Riemannian, Minkowski, and such non-Ri...

متن کامل

Geodesics on the Indicatrix of a Complex Finsler Manifold

In this note the geometry of the indicatrix (I, L̃) is studied as a hypersurface of a complex Finsler space (M,L). The induced Chern-Finsler and Berwald connections are defined and studied. The induced Berwald connection coincides with the intrinsic Berwald connection of the indicatrix bundle. We considered a special projection of a geodesic curve on a complex Finsler space (M,L), called the ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008