Bijective Deformations in Rn via Integral Curve Coordinates

نویسندگان

  • Lisa Huynh
  • Yotam I. Gingold
چکیده

We introduce Integral Curve Coordinates, which identify each point in a bounded domain with a parameter along an integral curve of the gradient of a function f on that domain; suitable functions have exactly one critical point, a maximum, in the domain, and the gradient of the function on the boundary points inward. Because every integral curve intersects the boundary exactly once, Integral Curve Coordinates provide a natural bijective mapping from one domain to another given a bijection of the boundary. Our approach can be applied to shapes in any dimension, provided that the boundary of the shape (or cage) is topologically equivalent to an n-sphere. We present a simple algorithm for generating a suitable function space for f in any dimension. We demonstrate our approach in 2D and describe a practical (simple and robust) algorithm for tracing integral curves on a (piecewise-linear) triangulated regular grid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bijective Deformations in $\mathbb{R}^n$ via Integral Curve Coordinates

We introduce Integral Curve Coordinates, which identify each point in a bounded domain with a parameter along an integral curve of the gradient of a function f on that domain; suitable functions have exactly one critical point, a maximum, in the domain, and the gradient of the function on the boundary points inward. Because every integral curve intersects the boundary exactly once, Integral Cur...

متن کامل

Homework set 7 - due 03 / 27 / 2015

• Review of vector fields and differential equations in Rn . Let X be a vector field on a nonempty open subset of Rn . An integral curve of X with initial condition p0 is a differentiable path c : (a,b) → Rn , defined on an open interval containing 0 such that c(0) = p0 and c ′(t ) = X (c(t )) for all t ∈ (a,b). Thus to the vector field X one associates a differential equation ṗ = X (p). A solu...

متن کامل

Global Inversion via the Palais-smale Condition

Fixing a complete Riemannian metric g on Rn, we show that a local diffeomorphism f : Rn → Rn is bijective if the height function f · v (standard inner product) satisfies the Palais-Smale condition relative to g for each for each nonzero v ∈ Rn. Our method substantially improves a global inverse function theorem of Hadamard. In the context of polynomial maps, we obtain new criteria for invertibi...

متن کامل

Deformations, Quantizations, and Noncommutativity

Definition 1.1. A Poisson algebra is an associative algebra A over a field K (fixed, of characteristic zero), equipped with a Lie bracket {−,−} such that {x,−} is a derivation for any x ∈ A, i.e. {x, yz} = {x, y}z + y{x, z}. Definition 1.2. A Poisson structure on a manifold M is a Poisson bracket {−,−} on the algebra C∞(M). Example 1.3. On T ∗Rn with position coordinates q1, ..., qn and momentu...

متن کامل

Harmonic Coordinates

Generalizations of barycentric coordinates in two and higher dimensions have been shown to have a number of applications in recent years, including finite element analysis, the definition of Spatches (n-sided generalizations of Bézier surfaces), free-form deformations, mesh parametrization, and interpolation. In this paper we present a new form of d dimensional generalized barycentric coordinat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1505.00073  شماره 

صفحات  -

تاریخ انتشار 2015