Initial rate and isotope exchange studies of rat skeletal muscle hexokinase.
نویسندگان
چکیده
The kinetic mechanism of rat skeletal muscle hexokinase (hexokinase II) was investigated in light of a proposal by Cornish-Bowden and his co-workers (Gregoriou, M., Trayer, I. P., and Cornish-Bowden, A. (1983) Eur. J. Biochem. 134, 283-288). These investigators reported that the kinetic mechanism is ordered, with glucose adding before ATP and ADP dissociating from hexokinase before glucose-6-P. In addition, these workers suggest that glucose-6-P and ATP add to allosteric sites on hexokinase. We investigated the mechanism of action of hexokinase II by studying initial rate kinetics in the nonphysiological direction and by isotope exchange at chemical equilibrium. The former experiments were carried out in the absence of inhibitors and then with AMP, which is a competitive inhibitor of ADP, and with glucose 1,6-bisphosphate, a competitive inhibitor of glucose-6-P. The findings from these experiments suggest that the kinetic mechanism is rapid equilibrium Random Bi Bi. Isotope exchange at equilibrium studies also supports the random nature of the muscle hexokinase reaction; however, they also suggest that the mechanism is partially ordered, i.e. there is a preferred pathway associated with the branched mechanism. Approximately two-thirds of the flux through the hexokinase reaction involves the glucose on first glucose-6-P off last branch of the Random Bi Bi mechanism. These results imply that the kinetic mechanism is steady state Random Bi Bi. There is some evidence to suggest that glucose-6-P binds to an allosteric site on muscle hexokinase, but none to suppose that ATP binds allosterically. Analysis of the mechanism of Gregoriou et al. suggests that it is at variance with the findings of this report as well as with data available from other laboratories.
منابع مشابه
Kinetic studies with skeletal-muscle hexokinase.
Rat skeletal-muscle hexokinase was partially purified by ammonium sulphate fractionation and gel filtration. The mechanism of the skeletal-muscle hexokinase was studied kinetically by initial-velocity analysis and product inhibition. Glucose 6-phosphate was a non-competitive inhibitor of glucose and ATP. ADP was a non-competitive inhibitor of glucose and a competitive inhibitor of ATP. The data...
متن کاملKinetics, mechanism, and regulation of rat skeletal muscle hexokinase.
Initial rate studies were employed to investigate the kinetic mechanism of action of rat skeletal muscle type II hexokinase (EC 3.7.1.1). These investigations involved the use of substrate analogs which act as competitive inhibitors and product inhibition experiments. The findings indicate that substrates n-glucose and MgATP2add randomly to hexokmase. Both products exhibit noncompetitive inhibi...
متن کاملAllosteric character of the inhibition of rat-muscle hexokinase B by glucose 6-phosphate.
We previously provided evidence from isotope-exchange measurements under non-equilibrium conditions that hexokinase B from rat muscle follows a compulsory-order mechanism with glucose binding before MgATP, and with both glucose 6-phosphate and MgATP capable of binding allosterically [Gregoriou, M., Trayer, I. P. & Cornish-Bowden, A. (1983) Eur. J. Biochem. 134, 283-288]. We have now re-examined...
متن کاملHexokinase isozyme distribution in human skeletal muscle.
Two isoforms of hexokinase (type I and type II) are expressed in skeletal muscle; however, the intracellular distribution of these hexokinase isoforms in human skeletal muscle is unclear. The current study was undertaken to assess this issue because binding of hexokinase to subcellular structures is considered to be an important mechanism in the regulation of glucose phosphorylation. Vastus lat...
متن کاملIsotope-exchange evidence that glucose 6-phosphate inhibits rat-muscle hexokinase II at an allosteric site.
The flux ratio for hexokinase type II from rat muscle, i.e. the rate of conversion of glucose 6-phosphate molecules into ATP molecules divided by the simultaneous rate of conversion of glucose 6-phosphate molecules into glucose molecules, increases with the MgATP concentration but is independent of the glucose concentration. This behaviour requires that glucose must bind before MgATP when the r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 260 22 شماره
صفحات -
تاریخ انتشار 1985