A nonmonotone approximate sequence algorithm for unconstrained nonlinear optimization

نویسنده

  • Hongchao Zhang
چکیده

A new nonmonotone algorithm is proposed and analyzed for unconstrained nonlinear optimization. The nonmonotone techniques applied in this algorithm are based on the estimate sequence proposed by Nesterov (Introductory Lectures on Convex Optimization: A Basic Course, 2004) for convex optimization. Under proper assumptions, global convergence of this algorithm is established for minimizing general nonlinear objective function with Lipschitz continuous derivatives. For convex objective function, this algorithm maintains the optimal convergence rate of convex optimization. In numerical experiments, this algorithm is specified by employing safeguarded nonlinear conjugate gradient search directions. Numerical results show the nonmonotone algorithm performs significantly better than the corresponding monotone algorithm for solving the unconstrained optimization problems in the CUTEr (Bongartz et al. in ACM Trans. Math. Softw. 21:123–160, 1995) library.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Trust-region Method using Extended Nonmonotone Technique for Unconstrained Optimization

In this paper, we present a nonmonotone trust-region algorithm for unconstrained optimization. We first introduce a variant of the nonmonotone strategy proposed by Ahookhosh and Amini cite{AhA 01} and incorporate it into the trust-region framework to construct a more efficient approach. Our new nonmonotone strategy combines the current function value with the maximum function values in some pri...

متن کامل

Solving the Unconstrained Optimization Problems Using the Combination of Nonmonotone Trust Region Algorithm and Filter Technique

In this paper, we propose a new nonmonotone adaptive trust region method for solving unconstrained optimization problems that is equipped with the filter technique. In the proposed method, the various nonmonotone technique is used. Using this technique, the algorithm can advantage from nonmonotone properties and it can increase the rate of solving the problems. Also, the filter that is used in...

متن کامل

The Global Convergence of Self-Scaling BFGS Algorithm with Nonmonotone Line Search for Unconstrained Nonconvex Optimization Problems

The self-scaling quasi-Newton method solves an unconstrained optimization problem by scaling the Hessian approximation matrix before it is updated at each iteration to avoid the possible large eigenvalues in the Hessian approximation matrices of the objective function. It has been proved in the literature that this method has the global and superlinear convergence when the objective function is...

متن کامل

The Global Convergence of Self-scale BFGS Algorithm with Nonmonotone Line Search for Unconstrained Nonconvex Optimization Problems

The self-scaling quasi-Newton method solves an unconstrained optimization problem by scaling the Hessian approximation matrix before it is updated at each iteration to avoid the possible large eigenvalues in the Hessian approximation matrices of the objective function. It has been proved in the literature that this method has the global and superlinear convergence when the objective function is...

متن کامل

A Nonmonotone Second - Order Steplength Method for Unconstrained Minimization

In this paper, a nonmonotone method based on McCormick’s second-order Armijo’s step-size rule [7] for unconstrained optimization problems is proposed. Every limit point of the sequence generated by using this procedure is proved to be a stationary point with the second-order optimality conditions. Numerical tests on a set of standard test problems are presented and show that the new algorithm i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2014