Short-term adaptation of auditory receptive fields to dynamic stimuli.
نویسندگان
چکیده
Short-term adaptation and recovery from adaptation have a strong impact on the processing of dynamic stimuli. Adaptive effects on neuronal activity have been studied most commonly for changes in first-order statistics of stimuli such as stepwise increments or decrements in stimulus amplitude. However, changes in higher moment statistics, such as the variance of the amplitude distribution in visual stimuli, also can invoke pronounced adaptation behavior. We demonstrate here that neurons in the inferior colliculus (ICC) of the cat show adaptation to dynamic auditory stimuli that differ in the variance of their modulation depth distribution. In addition, it is shown that neurons show adaptation to other higher moment statistics (e.g., kurtosis) of the modulation envelope. The time course of adaptation is specific for the altered stimulus property and the direction of parameter change. The use of dynamic stimuli allows an estimate of the effects of the adaptation on the temporal response properties of the neurons. We demonstrate that temporal receptive fields of neurons undergo change during the course of adaptation. We show that adaptation to variance in the ICC has many similarities to that in the retina and suggest that adaptation to variance is a general property of sensory systems that allows them to effectively deal with a nonstationary environment.
منابع مشابه
Spectrotemporal structure of receptive fields in areas AI and AAF of mouse auditory cortex.
The mouse is a promising model system for auditory cortex research because of the powerful genetic tools available for manipulating its neural circuitry. Previous studies have identified two tonotopic auditory areas in the mouse-primary auditory cortex (AI) and anterior auditory field (AAF)- but auditory receptive fields in these areas have not yet been described. To establish a foundation for ...
متن کاملFrequency-specific adaptation and its underlying circuit model in the auditory midbrain
Receptive fields of sensory neurons are considered to be dynamic and depend on the stimulus history. In the auditory system, evidence of dynamic frequency-receptive fields has been found following stimulus-specific adaptation (SSA). However, the underlying mechanism and circuitry of SSA have not been fully elucidated. Here, we studied how frequency-receptive fields of neurons in rat inferior co...
متن کاملTemporal variability of spectro-temporal receptive fields in the anesthetized auditory cortex
Temporal variability of neuronal response characteristics during sensory stimulation is a ubiquitous phenomenon that may reflect processes such as stimulus-driven adaptation, top-down modulation or spontaneous fluctuations. It poses a challenge to functional characterization methods such as the receptive field, since these often assume stationarity. We propose a novel method for estimation of s...
متن کاملMapping Receptive Fields in Space and Time
complex signals in order to guide adaptive behavior. It follows that the response properties of neurons should reflect the dynamic nature of such signals. Recently, several studies have demonstrated the existence of time-varying receptive fields in the auditory, visual and somatosensory thalamocortical pathways. The characteristics of these receptive fields suggest that they are constrained by ...
متن کاملStability of spectro-temporal tuning over several seconds in primary auditory cortex of the awake ferret.
The steady-state spectro-temporal tuning of auditory cortical cells has been studied using a variety of broadband stimuli that characterize neurons by their steady-state responses to long duration stimuli, lasting from about a second to several minutes. Central sensory stations are thought to adapt in their response to stimuli presented over extended periods of time. For instance, we have previ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 91 2 شماره
صفحات -
تاریخ انتشار 2004