Generation of a complete set of additive shape-invariant potentials from an Euler equation.

نویسندگان

  • Jonathan Bougie
  • Asim Gangopadhyaya
  • Jeffry V Mallow
چکیده

In supersymmetric quantum mechanics, shape invariance is a sufficient condition for solvability. We show that all conventional additive shape-invariant superpotentials that are independent of ℏ can be generated from two partial differential equations. One of these is equivalent to the one-dimensional Euler equation expressing momentum conservation for inviscid fluid flow, and it is closed by the other. We solve these equations, generate the set of all conventional shape-invariant superpotentials, and show that there are no others in this category. We then develop an algorithm for generating all additive shape-invariant superpotentials including those that depend on ℏ explicitly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Unstructured Grid Generation Scheme for Solution of the Heat Equation

An adaptive unstructured grid generation scheme is introduced to use finite volume (FV) and finite element (FE) formulation to solve the heat equation with singular boundary conditions. Regular grids could not acheive accurate solution to this problem. The grid generation scheme uses an optimal time complexity frontal method for the automatic generation and delaunay triangulation of the grid po...

متن کامل

Classification of invariant solutions of the Boltzmann equation

An isomorphism of the Lie algebras L11 admissible by the full Boltzmann kinetic equation with an arbitrary differential cross section and by the Euler gas dynamics system of equations with a general state equation is set up. The similarity is also proved between extended algebras L12 admissible by the same equations for specified power-like intermolecular potentials and for polytropic gas. This...

متن کامل

Superstability of $m$-additive maps on complete non--Archimedean spaces

The stability problem of the functional equation was conjectured by Ulam and was solved by Hyers in the case of additive mapping. Baker et al. investigated the superstability of the functional equation from a vector space to real numbers. In this paper, we exhibit the superstability of $m$-additive maps on complete non--Archimedean spaces via a fixed point method raised by Diaz and Margolis.

متن کامل

ابرپتانسیلهای دیگری برای مکانیک کوانتومی ابرتقارنی

  We give a brief review on the known shape invariant potentials. We derive the all of them by introducing a general superpotential with two constant and four variable parameters. Finally we examine those potentials which lead to the equally-spaced energy spectrum for the Klein-Gordon equation.

متن کامل

Approximation of a generalized Euler-Lagrange type additive mapping on Lie $C^{ast}$-algebras

Using fixed point method, we prove some new stability results for Lie $(alpha,beta,gamma)$-derivations and Lie $C^{ast}$-algebra homomorphisms on Lie $C^{ast}$-algebras associated with the Euler-Lagrange type additive functional equation begin{align*} sum^{n}_{j=1}f{bigg(-r_{j}x_{j}+sum_{1leq i leq n, ineq j}r_{i}x_{i}bigg)}+2sum^{n}_{i=1}r_{i}f(x_{i})=nf{bigg(sum^{n}_{i=1}r_{i}x_{i}bigg)} end{...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 105 21  شماره 

صفحات  -

تاریخ انتشار 2010