Different binding modes of amphibian and human corticotropin-releasing factor type 1 and type 2 receptors: evidence for evolutionary differences.
نویسندگان
چکیده
The binding characteristics of corticotropin-releasing factor (CRF) type 1 (CRF(1)) and type 2 (CRF(2)) receptors from human (hCRF(1) and hCRF(2alpha)) and Xenopus (xCRF(1) and xCRF(2)) were compared using four different (125)I-labeled CRF analogs, the agonists (125)I-CRF and (125)I-sauvagine, and the antagonists (125)I-astressin ((125)I-AST) and (125)I-antisauvagine-30 ((125)I-aSVG). The hCRF(2alpha) and xCRF(2) receptors bound all four radioligands with different affinities, whereas hCRF(1) did not bind (125)I-aSVG, and xCRF(1) bound neither (125)I-sauvagine nor (125)I-aSVG. Competitive binding studies using unlabeled agonists and antagonists with hCRF(1) and hCRF(2alpha) receptors revealed that most agonists exhibited higher affinity in displacing agonist radioligands compared with displacement of antagonist radioligands. Exceptions were the agonists human and rat urocortin, which displayed high-affinity binding in the presence of either (125)I-labeled agonist or antagonist ligands. In contrast, the affinities of antagonists were independent of the nature of the radioligand. We also found that, in contrast to the mammalian CRF receptors, the affinity of ligand binding to xCRF(1) and xCRF(2) receptors strongly depended on the nature of the radioligand used for competition. For xCRF(1), competitors showed different rank order binding profiles with (125)I-CRF compared with (125)I-AST as the displaceable ligand. Similarly, binding of competitors to the xCRF(2) receptor showed markedly different profiles with (125)I-CRF as the competed ligand compared with the other radioligands. These data demonstrate that amphibian CRF receptors have distinctly different binding modes compared with their mammalian counterparts.
منابع مشابه
Involvement of the corticotropin-releasing factor (CRF) type 2 receptor in CRF-induced thyrotropin release by the amphibian pituitary gland.
Corticotropin-releasing factor (CRF) is considered to be a main adrenocorticotropin-releasing factor in vertebrates. In non-mammalian species, CRF and related peptides cause the release of thyroid-stimulating hormone (TSH) from the anterior pituitary. The actions of CRF peptides are mediated by two G protein coupled receptors (CRF1 and CRF2) that have different ligand specificities. Using ligan...
متن کاملCorticotropin-releasing factor receptors and stress-related alterations of gut motor function.
Over the past few decades, corticotropin-releasing factor (CRF) signaling pathways have been shown to be the main coordinators of the endocrine, behavioral, and immune responses to stress. Emerging evidence also links the activation of CRF receptors type 1 and type 2 with stress-related alterations of gut motor function. Here, we review the role of CRF receptors in both the brain and the gut as...
متن کاملAlanine scanning mutagenesis of the second extracellular loop of type 1 corticotropin-releasing factor receptor revealed residues critical for peptide binding.
Upon binding of the corticotropin-releasing factor (CRF) analog sauvagine to the type 1 CRF receptor (CRF(1)), the amino-terminal portion of the peptide has been shown to lie near Lys257 in the receptor's second extracellular loop (EL2). To test the hypothesis that EL2 residues play a role in the binding of sauvagine to CRF(1) we carried out an alanine-scanning mutagenesis study to determine th...
متن کاملCRF receptors in the nucleus accumbens modulate partner preference in prairie voles.
Recent evidence suggests a role for corticotropin-releasing factor (CRF) in the regulation of pair bonding in prairie voles. We have previously shown that monogamous and non-monogamous vole species have dramatically different distributions of CRF receptor type 1 (CRF(1)) and CRF receptor type 2 (CRF(2)) in the brain and that CRF(1) and CRF(2) receptor densities in the nucleus accumbens (NAcc) a...
متن کاملCorticotropin-Releasing Factor Receptors and Their Interacting Proteins: Functional Consequences.
The corticotropin-releasing factor (CRF) system, which is involved in stress, addiction, and anxiety disorders such as depression, acts through G-protein-coupled receptors (GPCRs) known as type-1 and type-2 CRF receptors. The purpose of this review is to highlight recent advances in the interactions of CRF receptors with other GPCRs and non-GPCR proteins and their associated functional conseque...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 296 1 شماره
صفحات -
تاریخ انتشار 2001