In-plane contributions to phase contrast in intermittent contact atomic force microscopy.

نویسندگان

  • Matthew S Marcus
  • M A Eriksson
  • Darryl Y Sasaki
  • Robert W Carpick
چکیده

Contrast in the phase response of intermittent-contact atomic force microscopy (IC-AFM) reveals in-plane structural and mechanical properties of polymer monolayers. This result is unexpected, as IC-AFM has previously only been considered as a probe of out-of-plane properties. Until now, AFM measurements of nanoscale in-plane properties have employed contact mode techniques. In-plane property measurements are possible with intermittent contact AFM because there is a small but significant component of tip motion parallel to the sample surface. This in-plane component of tip displacement is virtually universal in AFM, implying that oscillating-tip techniques generally are sensitive to in-plane material properties. We present a simple Hertzian model of intermittent-contact AFM that includes such an in-plane displacement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Material anisotropy revealed by phase contrast in intermittent contact atomic force microscopy.

Phase contrast in intermittent-contact atomic force microscopy (AFM) reveals in-plane structural and mechanical properties of polymer monolayers. This is surprising, because measurements of nanoscale in-plane properties typically require contact mode microscopies. Our measurements are possible because the tip oscillates not just perpendicular but also parallel to the sample surface along the lo...

متن کامل

Mechanisms of dynamic force microscopy on polyvinyl alcohol: region-specific non-contact and intermittent contact regimes

Dynamic force microscopy (DFM) phase signals were studied using heterogeneous films of polyvinyl alcohol (PVA). The phase was measured as a function of distance and drive frequency over regions of the film with different dissipative properties. When driving below the free resonance frequency at moderate amplitudes, the tip—sample interaction jumps between non-contact and intermittent contact re...

متن کامل

A simplified but intuitive analytical model for intermittent- contact-mode force microscopy based on Hertzian mechanics

The forces acting on the substrate in intermittent-contact-mode (IC mode, tapping mode) atomic force microscopy are not accessible to a direct measurement. For an estimation of these forces, a simple analytical model is developed by considering only the shift of the cantilever resonance frequency caused by Hertzian (contact) forces. Based on the relationship between frequency shift and tip–samp...

متن کامل

Surface Characterization of Viscoelastic Materials through Spectral Intermittent Contact Atomic Force Microscopy

Title of Document: SURFACE CHARACTERIZATION OF VISCOELASTIC MATERIALS THROUGH SPECTRAL INTERMITTENT CONTACT ATOMIC FORCE MICROSCOPY Jeffrey Charles Williams, Master of Science, 2012 Directed By: Assistant Professor Santiago Solares Department of Mechanical Engineering The ability to recover material properties at the atomic scale has been the ongoing objective of the Atomic Force Microscope (AF...

متن کامل

Effective Parameters in Contact Mechanic for Micro/nano Particle Manipulation Based on Atomic Force Microscopy

The effect of geometry and material of the Micro/Nano particle on contact mechanic for manipulation was studied in this work based on atomic force microscopy. Hertz contact model simulation for EpH biological micro particle with spherical, cylindrical, and circular crowned roller shape was used to investigate the effect of geometry on contact simulation process in manipulation. Then, to val...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ultramicroscopy

دوره 97 1-4  شماره 

صفحات  -

تاریخ انتشار 2003