Pathway for Biodegrading Nodularin (NOD) by Sphingopyxis sp. USTB-05.
نویسندگان
چکیده
Nodularin (NOD) is greatly produced by Nodularia spumigena and released into the environment when toxic cyanobacterial blooms happened in natural water body, which is seriously harmful to human and animals. The promising bacterial strain of Sphingopyxis sp. USTB-05 was found to have an ability in biodegrading NOD. Initially, 11.6 mg/L of NOD could be completely eliminated within 72 h by whole cells of USTB-05, and within 36 h by its crude enzymes (CEs) of 570 mg/L, respectively. During the enzymatic biodegradation process of NOD, two products were observed on the profiles of HPLC. Based on the analysis of m/z ratios of NOD and its two products on a rapid-resolution liquid chromatogram-mass spectrum (RRLC-MS), we suggested that at least two enzymes of USTB-05 participated in biodegrading NOD. The first enzyme hydrolyzed Arg-Adda peptide bond of cyclic NOD and converted it to linear NOD as the first product. The second enzyme was found to cut off the target peptide bond between Adda and Glu of linearized NOD, and Adda was produced as a second and dead-end product. This finding is very important in both basic research and the application of USTB-05 on the removal of NOD from a water environment.
منابع مشابه
Pathway for Biodegrading Microcystin-YR by Sphingopyxis sp. USTB-05
Harmful cyanobacterial blooms in waters have become a global environmental problem, this mainly due to the production and release of various microalgal toxins, in which microcystins (MCs) are distributed widely. Here, we focused on the study of a typical form of microcystins called microcystin-YR (MC-YR). It was found that initial 14.8 mg/L of MC-YR could be completely eliminated within 10 hr b...
متن کاملMicrobial biodegradation of microcystin-RR by bacterium Sphingopyxis sp. USTB-05.
A strain, USTB-05, isolated from Lake Dianchi, China, degraded the cyanobacterial toxin microcystin-RR (MC-RR) at the rate of 16.7 mg/L per day. Analysis of 16S rDNA sequence showed that the strain was Sphingopyxis sp. Enzymatic degradation pathways for MC-RR by Sphingopyxis sp. USTB-05 were identified. Adda-Arg peptide bond of MC-RR was cleaved and then a hydrogen and a hydroxyl were combined ...
متن کاملRapid and Highly Sensitive Non-Competitive Immunoassay for Specific Detection of Nodularin
Nodularin (NOD) is a cyclic penta-peptide hepatotoxin mainly produced by Nodularia spumigena, reported from the brackish water bodies of various parts of the world. It can accumulate in the food chain and, for safety reasons, levels of NOD not only in water bodies but also in food matrices are of interest. Here, we report on a non-competitive immunoassay for the specific detection of NOD. A pha...
متن کاملCharacteristics and metabolic pathways of fluorene (FLU) degradation by strain Rhodococcus sp. USTB-C isolated from crude oil
A fluorene-degrading strain named USTB-C was isolated from crude oil of production well in Dagang oil field, southeast of Tianjin, northeast China. The 16S rDNA sequence of USTB-C showed 100% similarity with that of Rhodococcus erythropolis PR4, it was belonged to Rhodococcus. The strain USTB-C could remove 55.8% of fluorene with an initial concentration of 100 mg L in 23 days without other sub...
متن کاملCharacterization and Kinetic study of PAH–degrading Sphingopyxis ummariensis bacteria isolated from a petrochemical wastewater treatment plant
The expansion of a microbial bank for the degradation of polycyclic aromatic hydrocarbons (PAHs) is crucial for removal of these persistent pollutants. In this study, five gram-negative, aerobic, non-fermentative bacterial strains (III-R3, IV-P11, IV-P13, IV-R13, and V-P18) were isolated from the activated sludge of a petrochemical wastewater treatment plant using enrichment pro tocol based on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Toxins
دوره 8 5 شماره
صفحات -
تاریخ انتشار 2016