Phosphodiesterase 2A forms a complex with the co-chaperone XAP2 and regulates nuclear translocation of the aryl hydrocarbon receptor.
نویسندگان
چکیده
Phosphodiesterase type 2A (PDE2A) hydrolyzes cyclic nucleotides cAMP and cGMP, thus efficiently controlling cNMP-dependent signaling pathways. PDE2A is composed of an amino-terminal region, two regulatory GAF domains, and a catalytic domain. Cyclic nucleotide hydrolysis is known to be activated by cGMP binding to GAF-B; however, other mechanisms may operate to fine-tune local cyclic nucleotide levels. In a yeast two-hybrid screening we identified XAP2, a crucial component of the aryl hydrocarbon receptor (AhR) complex, as a major PDE2A-interacting protein. We mapped the XAP2 binding site to the GAF-B domain of PDE2A. PDE assays with purified proteins showed that XAP2 binding does not change the enzymatic activity of PDE2A. To analyze whether PDE2A could affect the function of XAP2, we studied nuclear translocation of AhR, i.e. the master transcription factor controlling the expression of multiple detoxification genes. Notably, regulation of AhR target gene expression is initiated by tetrachlorodibenzodioxin (TCDD) binding to AhR and by a poorly understood cAMP-dependent pathway followed by the translocation of AhR from the cytosol into the nucleus. Binding of PDE2A to XAP2 inhibited TCDD- and cAMP-induced nuclear translocation of AhR in Hepa1c1c7 hepatocytes. Furthermore, PDE2A attenuated TCDD-induced transcription in reporter gene assays. We conclude that XAP2 targets PDE2A to the AhR complex, thereby restricting AhR mobility, possibly by a local reduction of cAMP levels. Our results provide first insights into the elusive cAMP-dependent regulation of AhR.
منابع مشابه
The hsp90 Co-chaperone XAP2 alters importin beta recognition of the bipartite nuclear localization signal of the Ah receptor and represses transcriptional activity.
The mouse aryl hydrocarbon receptor (mAhR) is a ligand-activated transcription factor that exists in a tetrameric, core complex with a dimer of the 90-kDa heat shock protein, and the hepatitis B virus X-associated protein 2 (XAP2). Transiently expressed mAhR-YFP (yellow fluorescent protein fused with the mAhR) localizes throughout cells, with a majority occupying nuclei. Co-expression of XAP2 w...
متن کاملThe hsp90 chaperone complex regulates intracellular localization of the dioxin receptor.
The molecular chaperone complex hsp90-p23 interacts with the dioxin receptor, a ligand-dependent basic helix-loop-helix (bHLH)/Per-Arnt-Sim domain transcription factor. Whereas biochemical and genetic evidence indicates that hsp90 is important for maintenance of a high-affinity ligand binding conformation of the dioxin receptor, the role of hsp90-associated proteins in regulation of the dioxin ...
متن کاملThe aryl hydrocarbon (Ah) receptor transcriptional regulator hepatitis B virus X-associated protein 2 antagonizes p23 binding to Ah receptor-Hsp90 complexes and is dispensable for receptor function.
To further understand the role that the hepatitis B virus X-associated protein 2 (XAP2) plays in regulating aryl hydrocarbon receptor (AhR) function, a point mutation was introduced at tyrosine 408 of the AhR, changing the residue to an alanine or lysine. These mutations resulted in the loss of AhR binding to endogenous XAP2 in COS-1 cells and reduced binding of exogenously expressed XAP2. Cell...
متن کاملPhosphodiesterases link the aryl hydrocarbon receptor complex to cyclic nucleotide signaling.
The aryl hydrocarbon receptor (AHR) is a major transcription factor regulated by different mechanisms. The classical view of AHR activation by xenobiotics needs to be amended by recent findings on the regulation of AHR by endogenous ligands and by crosstalk with other signaling pathways. In the cytosol the AHR recruits a large number of binding partners, including HSP90, p23, XAP2 and the ubiqu...
متن کاملRole of endogenous XAP2 protein on the localization and nucleocytoplasmic shuttling of the endogenous mouse Ahb-1 receptor in the presence and absence of ligand.
Studies using transient expression systems have implicated the hepatitis B virus X-associated protein (XAP2) in the control of aryl hydrocarbon receptor (AHR) stability and subcellular location. Studies were performed in Hepa-1 cells to evaluate these functions of XAP2 on the mouse Ahb-1 receptor under endogenous stoichiometry. The Ahb-1 receptor is cytoplasmic, and it becomes predominantly nuc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 282 18 شماره
صفحات -
تاریخ انتشار 2007