Eugenol specialty chemical production in transgenic poplar (Populus tremula × P. alba) field trials

نویسندگان

  • Da Lu
  • Xianghe Yuan
  • Sung‐Jin Kim
  • Joaquim V. Marques
  • P. Pawan Chakravarthy
  • Syed G. A. Moinuddin
  • Randi Luchterhand
  • Barri Herman
  • Laurence B. Davin
  • Norman G. Lewis
چکیده

A foundational study assessed effects of biochemical pathway introduction into poplar to produce eugenol, chavicol, p-anol, isoeugenol and their sequestered storage products, from potentially available substrates, coniferyl and p-coumaryl alcohols. At the onset, it was unknown whether significant carbon flux to monolignols vs. other phenylpropanoid (acetate) pathway metabolites would be kinetically favoured. Various transgenic poplar lines generated eugenol and chavicol glucosides in ca. 0.45% (~0.35 and ~0.1%, respectively) of dry weight foliage tissue in field trials, as well as their corresponding aglycones in trace amounts. There were only traces of any of these metabolites in branch tissues, even after ~4-year field trials. Levels of bioproduct accumulation in foliage plateaued, even at the lowest introduced gene expression levels, suggesting limited monolignol substrate availability. Nevertheless, this level still allows foliage collection for platform chemical production, with the remaining (stem) biomass available for wood, pulp/paper and bioenergy product purposes. Several transformed lines displayed unexpected precocious flowering after 4-year field trial growth. This necessitated terminating (felling) these particular plants, as USDA APHIS prohibits the possibility of their interacting (cross-pollination, etc.) with wild-type (native plant) lines. In future, additional biotechnological approaches can be employed (e.g. gene editing) to produce sterile plant lines, to avoid such complications. While increased gene expression did not increase target bioproduct accumulation, the exciting possibility now exists of significantly increasing their amounts (e.g. 10- to 40-fold plus) in foliage and stems via systematic deployment of numerous 'omics', systems biology, synthetic biology and metabolic flux modelling approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Modification of Lignin in Hybrid Poplar (Populus alba × Populus tremula) Does Not Substantially Alter Plant Defense or Arthropod Communities

Lignin impedes access to cellulose during biofuel production and pulping but trees can be genetically modified to improve processing efficiency. Modification of lignin may have nontarget effects on mechanical and chemical resistance and subsequent arthropod community responses with respect to pest susceptibility and arthropod biodiversity. We quantified foliar mechanical and chemical resistance...

متن کامل

Phytoremediation with transgenic trees.

In the present paper actual trends in the use of transgenic trees for phytoremediation of contaminated soils are reviewed. In this context a current field trial in which transgenic poplars with enhanced GSH synthesis and hence elevated capacity for phytochelatin production are compared with wildtype plants for the removal of heavy metals at different levels of contamination and under different ...

متن کامل

Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature.

We identified a dwarf transgenic hybrid poplar (Populus tremula x Populus alba) after screening of 627 independent activation-tagged transgenic lines in tissue culture, greenhouse, and field environments. The cause of the phenotype was a hyperactivated gene encoding GA 2-oxidase (GA2ox), the major gibberellin (GA) catabolic enzyme in plants. The mutation resulted from insertion of a strong tran...

متن کامل

Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees

BACKGROUND The plant microbiome represents one of the key determinants of plant health and productivity by providing a plethora of functional capacities such as access to low-abundance nutrients, suppression of phytopathogens, and resistance to biotic and/or abiotic stressors. However, a robust understanding of the structural composition of the bacterial microbiome present in different plant mi...

متن کامل

Barrier to gene flow between two ecologically divergent Populus species, P. alba (white poplar) and P. tremula (European aspen): the role of ecology and life history in gene introgression.

The renewed interest in the use of hybrid zones for studying speciation calls for the identification and study of hybrid zones across a wide range of organisms, especially in long-lived taxa for which it is often difficult to generate interpopulation variation through controlled crosses. Here, we report on the extent and direction of introgression between two members of the "model tree" genus P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2017