B-chromatic Number of Cacti

نویسندگان

  • Victor A. Campos
  • Cláudia Linhares Sales
  • Frédéric Maffray
  • Ana Silva
چکیده

A b-colouring of a graph G is a proper colouring of G such that each colour contains a vertex that is adjacent to all other colours and the b-chromatic number χb(G) is the maximum number of colours used in a b-colouring of G. If m(G) is the largest integer k such that G has at least k vertices with degree at least k − 1, then we know that χb(G) ≤ m(G). Irving and Manlove [1] prove that, if T is a tree, then the b-chromatic number of T is at least m(T ) − 1. In this paper, we prove that, if G is a connected cactus and m(G) ≥ 7, then the b-chromatic number of G is at least m(G) − 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On chromaticity of graphs

Abstract In this paper we obtain the explicit formulas for chromatic polynomials of cacti. From the results relating to cacti we deduce the analogous formulas for the chromatic polynomials of n–gon–trees. Besides, we characterize unicyclic graphs by their chromatic polynomials. We also show that the so–called clique–forest–like graphs are chromatically equivalent.

متن کامل

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

The locating-chromatic number for Halin graphs

Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...

متن کامل

On the (k, i)-coloring of cacti and complete graphs

In the (k, i)-coloring problem, we aim to assign sets of colors of size k to the vertices of a graph G, so that the sets which belong to adjacent vertices of G intersect in no more than i elements and the total number of colors used is minimum. This minimum number of colors is called the (k, i)-chromatic number. We present in this work a very simple linear time algorithm to compute an optimum (...

متن کامل

The b-chromatic number of some tree-like graphs. (Le nombre b-chromatique de quelques classes de graphes généralisant les arbres)

A vertex colouring of a graph G is called a b-colouring if each colour class contains at least one vertex that has a neighbour in all other colour classes. The b-chromatic number χb(G) of G is the largest integer k for which G has a b-colouring with k colours. These concepts have been introduced by Irving and Manlove in 1999. They allow the analisys of the performance of some algorithms for col...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2009