Contralateral movement and extensor force generation alter flexion phase muscle coordination in pedaling.

نویسندگان

  • L H Ting
  • S A Kautz
  • D A Brown
  • F E Zajac
چکیده

The importance of bilateral sensorimotor signals in coordination of locomotion has been demonstrated in animals but is difficult to ascertain in humans due to confounding effects of mechanical transmission of forces between the legs (i.e., mechanical interleg coupling). In a previous pedaling study, by eliminating mechanical interleg coupling, we showed that muscle coordination of a unipedal task can be shaped by interlimb sensorimotor pathways. Interlimb neural pathways were shown to alter pedaling coordination as subjects pedaling unilaterally exhibited increased flexion-phase muscle activity compared with bilateral pedaling even though the task mechanics performed by the pedaling leg(s) in the unilateral and bilateral pedaling tasks were identical. To further examine the relationship between contralateral sensorimotor state and ipsilateral flexion-phase muscle coordination during pedaling, subjects in this study pedaled with one leg while the contralateral leg either generated an extensor force or relaxed as a servomotor either held that leg stationary or moved it in antiphase with the pedaling leg. In the presence of contralateral extensor force generation, muscle activity in the pedaling leg during limb flexion was reduced. Integrated electromyographic activity of the pedaling-leg hamstring muscles (biceps femoris and semimembranosus) during flexion decreased by 25-30%, regardless of either the amplitude of force generated by the nonpedaling leg or whether the leg was stationary or moving. In contrast, rectus femoris and tibialis anterior activity during flexion decreased only when the contralateral leg generated high rhythmic force concomitant with leg movement. The results are consistent with a contralateral feedforward mechanism triggering flexion-phase hamstrings activity and a contralateral feedback mechanism modulating rectus femoris and tibialis anterior activity during flexion. Because only muscles that contribute to flexion as a secondary function were observed, it is impossible to know whether the modulatory effect also acts on primary, unifunctional, limb flexors or is specific to multifunctional muscles contributing to flexion. The influence of contralateral extensor-phase sensorimotor signals on ipsilateral flexion may reflect bilateral coupling of gain control mechanisms. More generally, these interlimb neural mechanisms may coordinate activity between muscles that perform antagonistic functions on opposite sides of the body. Because pedaling and walking share biomechanical and neuronal control features, these mechanisms may be operational in walking as well as pedaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mutability of bifunctional thigh muscle activity in pedaling due to contralateral leg force generation.

Locomotion requires uninterrupted transitions between limb extension and flexion. The role of contralateral sensorimotor signals in executing smooth transitions is little understood even though their participation is crucial to bipedal walking. However, elucidating neural interlimb coordinating mechanisms in human walking is difficult because changes to contralateral sensorimotor activity also ...

متن کامل

اثر قطع عضو همیپلویکتومی بر کینماتیک و نیروی تولیدی عضلات اندام تحتانی حین راه رفتن با پروتز کانادین؛ گزارش موردی

Objective Hemipelvectomy amputation is a surgical procedure in which the lower limb and a portion of pelvic are removed. There are a few studies on the performance of this group of patients while walking. The aim of this paper was to evaluate the effect of hemipelvectomy amputation on kinematics and muscle force generation of the lower limb while walking with Canadian prosthesis. Materials & M...

متن کامل

Muscle coordination of maximum-speed pedaling.

A simulation based on a forward dynamical musculoskeletal model was computed from an optimal control algorithm to understand uni- and bi-articular muscle coordination of maximum-speed startup pedaling. The muscle excitations, pedal reaction forces, and crank and pedal kinematics of the simulation agreed with measurements from subjects. Over the crank cycle, uniarticular hip and knee extensor mu...

متن کامل

Sensorimotor state of the contralateral leg affects ipsilateral muscle coordination of pedaling.

The objective of this study was to determine if independent central pattern generating elements controlling the legs in bipedal and unipedal locomotion is a viable theory for locomotor propulsion in humans. Coordinative coupling of the limbs could then be accomplished through mechanical interactions and ipsilateral feedback control rather than through central interlimb neural pathways. Pedaling...

متن کامل

Spinal cord coordination of hindlimb movements in the turtle: interlimb temporal relationships during bilateral scratching and swimming.

Hindlimb interlimb coordination was examined in turtles during symmetrical "same-form" behaviors in which both hindlimbs utilized the same movement strategy ("form") and during asymmetric "mixed-form" behaviors in which the form exhibited by one hindlimb differed from that of its contralateral partner. In spinal turtles, three forms of scratching were examined: rostral, pocket, and caudal. Bila...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 83 6  شماره 

صفحات  -

تاریخ انتشار 2000