Two GABAergic intraglomerular circuits differentially regulate tonic and phasic presynaptic inhibition of olfactory nerve terminals.

نویسندگان

  • Z Shao
  • A C Puche
  • E Kiyokage
  • G Szabo
  • M T Shipley
چکیده

Olfactory nerve axons terminate in olfactory bulb glomeruli forming excitatory synapses onto the dendrites of mitral/tufted (M/T) and juxtaglomerular cells, including external tufted (ET) and periglomerular (PG) cells. PG cells are heterogeneous in neurochemical expression and synaptic organization. We used a line of mice expressing green fluorescent protein under the control of the glutamic acid decarboxylase 65-kDa gene (GAD65+) promoter to characterize a neurochemically identified subpopulation of PG cells by whole cell recording and subsequent morphological reconstruction. GAD65+ GABAergic PG cells form two functionally distinct populations: 33% are driven by monosynaptic olfactory nerve (ON) input (ON-driven PG cells), the remaining 67% receive their strongest drive from an ON-->ET-->PG circuit with no or weak monosynaptic ON input (ET-driven PG cells). In response to ON stimulation, ON-driven PG cells exhibit paired-pulse depression (PPD), which is partially reversed by GABA(B) receptor antagonists. The ON-->ET-->PG circuit exhibits phasic GABA(B)-R-independent PPD. ON input to both circuits is under tonic GABA(B)-R-dependent inhibition. We hypothesize that this tonic GABA(B)R-dependent presynaptic inhibition of olfactory nerve terminals is due to autonomous bursting of ET cells in the ON-->ET-->PG circuit, which drives tonic spontaneous GABA release from ET-driven PG cells. Both circuits likely produce tonic and phasic postsynaptic inhibition of other intraglomerular targets. Thus olfactory bulb glomeruli contain at least two functionally distinct GABAergic circuits that may play different roles in olfactory coding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two GABAergic Intraglomerular Circuits Differentially Regulate Tonic and

Olfactory nerve axons terminate in olfactory bulb glomeruli forming excitatory synapses onto the dendrites of mitral/tufted (M/T) and juxtaglomerular cells, including external tufted (ET) and periglomerular (PG) cells. PG cells are heterogeneous in neurochemical expression and synaptic organization. We used a line of mice expressing green fluorescent protein under the control of the glutamic ac...

متن کامل

Tonic inhibition sets the state of excitability in olfactory bulb granule cells.

GABAergic granule cells (GCs) regulate, via mitral cells, the final output from the olfactory bulb to piriform cortex and are central for the speed and accuracy of odour discrimination. However, little is known about the local circuits in which GCs are embedded and how GCs respond during functional network activity. We recorded inhibitory and excitatory currents evoked during a single sniff-lik...

متن کامل

Presynaptic glutamate levels in tonic and phasic motor axons correlate with properties of synaptic release.

Synaptic glutamate release involves the accumulation of cytoplasmic glutamate in synaptic vesicles, whereafter it is released by triggered exocytosis. As glutamatergic terminals are known to be functionally diverse it was of interest to examine whether the presynaptic glutamate supply differs between individual axon terminals with distinct release properties. The glutamatergic terminals in the ...

متن کامل

GABA transporter-1 (GAT1)-deficient mice: differential tonic activation of GABAA versus GABAB receptors in the hippocampus.

After its release from interneurons in the CNS, the major inhibitory neurotransmitter GABA is taken up by GABA transporters (GATs). The predominant neuronal GABA transporter GAT1 is localized in GABAergic axons and nerve terminals, where it is thought to influence GABAergic synaptic transmission, but the details of this regulation are unclear. To address this issue, we have generated a strain o...

متن کامل

Intraglomerular inhibition shapes the strength and temporal structure of glomerular output.

Odor signals are transmitted to the olfactory bulb by olfactory nerve (ON) synapses onto mitral/tufted cells (MCs) and external tufted cells (ETCs). ETCs, in turn, provide feedforward excitatory input to MCs. MC and ETCs are also regulated by inhibition: intraglomerular and interglomerular inhibitory circuits act at MC and ETC apical dendrites; granule cells (GCs) inhibit MC lateral dendrites v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 101 4  شماره 

صفحات  -

تاریخ انتشار 2009